

^{129m,131m,133m}Xe for gamma-MRI, a novel medical imaging technique

Mateusz Chojnacki ISOLDE CERN/University of Geneva

Gamma-MRI - motivation

NOVEL MEDICAL IMAGING MODALITY: increased MRI sensitivity+improved SPECT resolution

FET-OPEN project (H2020-EU.1.2.,H2020-EU.1.2.1), European Union's Horizon 2022, grant agreement No 964644

ASYMETRIC GAMMA EMISSION FROM ALIGNED RADIONUCLEI

proof of principle Y. Zheng, et al., Nature (537), 652 (2016)

2/13

CHANGING GAMMA ASYMMETRY UPON RF-EXCITATION IN A GRADIENT FIELD B 330 $\pi/2$ RF pulse in resonance with 1 voxel 3200 Transverse Det. Longitudinal Det. 90 270 Transverse Det 2 3000 Long Det \vec{B} 240 120 - 85% 2800 0088888888800 second 210 g 2600 Degree of change in counts Trans Det 1 Trans Det 2 Counts ∝ no. of nuclei in the rotated voxel 2400 2200 2000 2 8 10 4 12 16 14 18 0 . 2 time / microseconds -5 -2 -10 x/mm v/mm Rotate 1 voxel by 90° Simulation software for by application of RF pulse anisotropic gamma decay by R. Engel and E.L. Wistrom proof of principle 19011

Y. Zheng, et al., Nature (537), 652 (2016)

Gamma-MRI – ^mXe nuclei

WHY ^mXe:

- polarization of ¹²⁹Xe well established
- isomers with spin 11/2 show a very high degree of gamma emission asymmetry
- Xe (as a noble gas) is neutral to the human body
- ¹²⁹Xe is already used in MRI studies of the lungs and brain
- ¹³³Xe commonly used in brain imaging within the SPECT

Gamma-MRI – ^mXe production

THERMAL NEUTRON IRRADIATION OF STABLE XENON IN REACTOR CORE

IRRADIATION OF STABLE ¹²⁸Xe/¹³⁰Xe ENCLOSED IN QUARTZ TUBE

¹³⁰Xe(n,γ) ^{131m}Xe

*POSSIBLE PRODUCTION OF ANOTHER Xe ISOTOPES VIA DIFFERENT NUCLEAR REACTION LIKE (n,2n)

Gamma-MRI – ^mXe production THERMAL NEUTRON IRRADIATION OF STABLE XENON IN REACTOR CORE **National Centre** Institute **MECHANICAL** for Nuclear Research **FEEDTHROUGH** Laue-Langevin (MARIA reactor) (RHF reactor) ^{129m}Xe: 45(1)* ^{129m}Xe: 186(3)* ¹²⁷Xe: 0.02(1)* ^{129m}Xe ¹²⁷Xe: 0.07(1)* ¹²⁵Xe: 0.01(1)* ^{131m}Xe: 199(4)* ^{131m}Xe: 64(1)* 131mXe METAL CONTAINER WITH QUARTZ *UNIT: MBq/mg TUBE TRANSPORT VIAL mg - mass of irradiated stable Xe (typical mass of one sample ~1.3mg) TRANSFER EFFICIENCY: up to 84(2)%

Gamma-MRI – ^mXe production

ION-IMPLANTATION OF ^{129m,131m,133m}Xe INTO GOLD FOILS AT THE ISOLDE **FACILITY IN CERN**

	^{129m} Xe	^{131m} Xe	^{133m} Xe
IOT TARGET WITH p⁺	2.6(2)*	3.4(3)*	8.0(3)*
IOT TARGET NO p⁺ **	0.09(1)*	0.09(1)*	3.7(4)*
OLD TARGET NO p ^{+ **}	0.06(1)*	0.01(1)*	0.19(5)*
*IINIT: MBa/b (b_{-} time of cellection)			

UNIT: MBd/n (n - time of cellection)

**production rate decrease with time after proton irradiation

POSSIBLE O₂ CONTAMINATION ON AU SURFACE DURING TRANSPORT BETWEEN IMPLANTATION AND EXTRACTION POINT (POSSIBLE PROBLEM WITH POLARIZATION EXPERIMENT)

EXTRACTION EFFICIENCY : up to 84(1)%

TRANSFER EFFICIENCY : up to 87(3)%

Gamma-MRI – ^mXe polarization

POLARIZATION EXPERIMENT:

□ METHOD: SPIN-EXCHANGE OPTICAL PUMPING (SEOP)

2nd step: ^mXe polarization by Rb through hyperfine interaction

T.G.Walker, W.Harper, Rev.Mod.Phys.69(1997) 629-642

Gamma-MRI – ^mXe polarization **POLARIZATION EXPERIMENT - SETUP:** METHOD: SPIN-EXCHANGE OPTICAL PUMPING (SEOP) **HELMHOLTZ COILS (4.5mT)** < 30 °C LASER DIODE ARRAY PROVIDING **INSULATING OVEN CIRCULARLY POLARIZED INFRARED LIGHT** σ+ (794.7nm, 50W) Т **4 x FAST GAMMA** DETECTORS (LaBr₃) 100-200 °C 3 GLASS CELL WITH Rb, "Xe, N, **ASYMMETRY:** det4 - det1 $\delta(4/1) =$ det4

Gamma-MRI – ^mXe polarization

POLARIZATION EXPERIMENT – PRELIMINARY RESULTS:

Summary

- gamma-MRI novel medical imagining modality
- ^{129m,131m,133m}Xe produced successfully at difrent nuclear facilities and exctracted efficiently from the native containers
- Fully operational SEOP setup capable of polarizing Rb well and hinting Xe hyperpolarization
- First experimental gamma asymmetry was measured

gamma-MRI project website: http://gamma-mri.eu

Acknowledgements

CERN: M.Kowalska^{1,2}, K.Kulesz^{1,2}, I.Michelon³, J.Schell^{1,4}, R.Lica^{1,5}, N.Azaryan^{1,6}, T.T.Dang⁴, A.M.Gerami⁷, S.Pascu⁵, A.Dorsival¹, E.Aubert¹, L.Lambert¹
HES-SO: S.Pallada⁸, T.Kanellakopoulos⁸, V.Sanchez-Tembleque⁸
UCM: L.Fraile⁹, J.M.Udias Moinelo⁹
MAASTRICHT UNIVERSITY: R.Jolivet¹⁰
NCBJ(MARIA REACTOR): R.Prokopowicz¹¹, Ł.Murawski¹¹, Ł.Bąk¹¹, W.Kubiński¹¹, A.Korgul¹²
ILL(RHF REACTOR): U.Köster¹³

 ¹CERN, Meyrin, Switzerland
 ²University of Geneva, Geneva, Switzerland
 ³University of Padova, Padova, Italy ⁴University of Duisburg-Essen, Duisburg-Essen, Germany
 ⁵Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
 ⁶Adam Mickiewicz University, Poznań, Poland ⁷School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), Teheran, Iran
 ⁸University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
 ⁹Universidad Complutense de Madrid, Madrid, Spain
 ¹⁰Maastricht University, Maastricht, Netherlands
 ¹¹National Centre for Nuclear Research, Świerk, Poland
 ¹²University of Warsaw, Warsaw, Poland; ¹³Institut Laue-Langevin, Grenoble, France

FUNDNING: FET-OPEN project (H2020-EU.1.2.,H2020-EU.1.2.1), European Union's Horizon 2022 ,grant agreement No 964644

