The charm of charm

4th Jagiellonian Symposium on Advances in Particle Physics and Medicines

Jakub Ryżka AGH, University of Science and Technology

14th July 2022

Ja	kub	R١	/żka

Outline:

1 Why are charm particles charming?

2 The first observation of *CP* violation in charm sector

3 Intriguing two-body D^0 decays

4 *CP* violation searches in charm baryons

5 Conclusions

Standard Model - missing puzzles or new theory?

- The Standard Model (SM) is a theory of elementary particles and their interactions.
- The known value of *CP* violation is too small to explain the dominance of matter over antimatter in the universe.
- The main goal of particle physics is to look for physics beyond the SM.

How to find sign of new physics?

- ATLAS and CMS search for new processes and new particles directly produced in *pp* interactions.
- LHCb tests the SM in very precise measurements of known processes. Any disagreement with theoretical predictions will indicate in indirect way the existence of new phenomena.
- New particles might enter in the loops:

• CPV in charm sector is particularly promising, why? \Longrightarrow

Standard Model predictions in charm decays

- CP violation is expected to be $\sim 10^{-3}$ or less.
- Singly Cabibbo-suppressed decays are the **ONLY** place for *CP* violation in the SM.
- Small background from the SM makes a perfect place for searching new physics effects.
- To observe *CP* violation at least two amplitudes MUST interfere with different weak (ϕ) and strong phases (δ):

$$A_{CP} \sim |A_1||A_2|sin(\phi_1 - \phi_2)sin(\delta_1 - \delta_2)$$

• So far, CP violation is not observed in ANY baryon decays.

Jakub Ryżka

The charm of charm

Phys. Rev. Lett. 122 (2019) 211803

•
$$\sqrt{s} = 13 \text{ TeV}, \ L \sim 6 \text{ fb}^{-1}.$$

 $A_{CP}(t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)}$

• The $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ decays are analysed.

• The LHCb uses two methods to identify D^0 flavour:

Phys. Rev. Lett. 122 (2019) 211803

Total yields: ~ $44M(D^0 \rightarrow K^-K^+)$ and ~ $14M(D^0 \rightarrow \pi^-\pi^+)$

Jakub Ryżka

Phys. Rev. Lett. 122 (2019) 211803

• The difference in CP asymmetries between two decays:

$$\Delta A_{CP} \equiv A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+}) = A_{raw}(K^{-}K^{+}) - A_{raw}(\pi^{-}\pi^{+})$$
$$A_{raw} = A_{CP}(f) + A_{D}(f) + A_{P}(D)$$

- $A_D(f)$ the detector asymmetries.
- $A_P(D)$ the production asymmetry.
- $A_D(f)$ and $A_P(D)$ are of the order of 2%, while $A_{CP} \le 10^{-3}$.
- The detector asymmetries cancel since final states are charge symmetric (O(10⁻⁶)).
- The production asymmetries cancel in subtraction.

Phys. Rev. Lett. 122 (2019) 211803

• The first observation of CP violation in charm hadrons:

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4} \ (5.3 \ \sigma)$$

$$\Delta A_{CP} = \left[a_{CP}^{dir}(K^-K^+) - a_{CP}^{dir}(\pi^-\pi^+)\right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{ind}$$
JHEP 1106 (2011) 089

- Direct (majority) and indirect CP asymmetries contribute.
- Indirect *CP* asymmetries are smaller than 10%.

ΔA_{CP} - bittersweet result

- Still, there are a few possibilities:
 - according to U-spin symmetry, a_{CP}^{dir} is roughly the same magnitude in K^-K^+ and $\pi^-\pi^+,$
 - or a_{CP}^{dir} might be significantly different, in $\pi^-\pi^+ >> K^-K^+$ CP violation in D decays to two pseudoscalars: A SM-based calculation, E. Solomonidi, BEACH 2022.
- Nonetheless, to properly determine and investigate the source of potential *CP* violation, one has to examine **the single asymmetry**.

Measurement of *CPV* in $D^0 \rightarrow K^-K^+$

LHCb-PAPER-2022-024 in preparation

• Run 2 (2015 - 2018), $\sqrt{s} = 13$ TeV, $L \sim 6$ fb⁻¹.

Total yields: ~ $45M(D^0 \rightarrow K^-K^+)$ and ~ $60M(D^0 \rightarrow K^-\pi^+)$

Measurement of *CPV* in $D^0 \rightarrow K^-K^+$

LHCb-PAPER-2022-024 in preparation

• The raw asymmetry can be written as:

 $A(K^{-}K^{+}) = \boldsymbol{A_{CP}}(K^{-}K^{+}) + A_{prod}(D/D^{*+}) + A_{det}(\pi^{+}_{soft})$

• The nuisance asymmetries (*A*_{prod} and *A*_{det}) are removed by control channels with negligible *CP* asymmetry:

$$\begin{split} A(K^{-}\pi^{+}) &\approx A_{\rm prod}(D^{*+}) - A_{\rm det}(K^{+}) + A_{\rm det}(\pi^{+}) + A_{\rm det}(\pi^{+}_{\rm tag}), \\ A(K^{-}\pi^{+}\pi^{+}) &\approx A_{\rm prod}(D^{+}) - A_{\rm det}(K^{+}) + A_{\rm det}(\pi^{+}_{1}) + A_{\rm det}(\pi^{+}_{2}), \\ A(\overline{K}^{0}\pi^{+}) &\approx A_{\rm prod}(D^{+}) - A(K^{0}) + A_{\rm det}(\pi^{+}), \\ A(\phi\pi^{+}) &\approx A_{\rm prod}(D^{+}_{s}) + A_{\rm det}(\pi^{+}), \\ A(\overline{K}^{0}K^{+}) &\approx A_{\rm prod}(D^{+}_{s}) - A(K^{0}) + A_{\rm det}(K^{+}). \end{split}$$

• Measurement is performed with two methods:

 $A_{CP}(K^{-}K^{+}) = A(K^{-}K^{+}) - A(K^{-}\pi^{+}) + A(K^{-}\pi^{+}\pi^{+}) - A(\bar{K}^{0}\pi^{+}) - A(K^{0})$ $A_{CP}(K^{-}K^{+}) = A(K^{-}K^{+}) - A(K^{-}\pi^{+}) + A(\phi\pi^{+}) - A(\bar{K}^{0}K^{+}) - A(K^{0})$

Measurement of *CPV* in $D^0 \rightarrow K^-K^+$

LHCb-PAPER-2022-024 in preparation

• The resulting values for both methods:

 $A_{CP}(K^+K^-) = (13.6 \pm 8.8 \pm 1.6) \times 10^{-4}$ $A_{CP}(K^+K^-) = (2.8 \pm 6.7 \pm 2.0) \times 10^{-4}$

with a correlation corresponding to 0.06.

- The time-integrated CP asymmetry (averaged): $A_{CP}(K^{+}K^{-}) = [6.8\pm5.4\pm1.6]\times10^{-4}$
- The time-integrated *CP* asymmetry is a sum of a direct and indirect components:

$$A_{CP}(f) \approx a_{CP}^{dir} + \frac{\langle t \rangle}{\tau_D} \Delta Y, \quad \Delta Y \equiv -x \sin \phi + y \cos \phi \, a_{CP}^{dir}$$

Breaking news!

LHCb-PAPER-2022-024 in preparation

- The combination, including result from Run 1: $a_{K^-K^+}^{dir} = (7.7 \pm 5.7) \times 10^{-4}$
- Subtracting from ΔA_{CP} : $a_{\pi^-\pi^+}^{dir} = (23.2 \pm 6.1) \times 10^{-4}$

- The deviation from zero corresponds to $3.8\,\sigma!$
- The first evidence of direct CPV in single charm decay!
- Agreement with the hypothesis of U-spin symmetry (i.e. quark s quark d symmetry) 2.7σ

CPV searches in charm baryons

- So far, CPV has not been observed in any baryon decays.
- Searches are conducted in $\Xi_c^+ \rightarrow p K^- \pi^+$ decays.

• First search [Eur. Phys. J. C80 (2020) 986]:

- Data collected in Run 1, $\sqrt{s} = 7$ and 8 TeV, $L = 3 \text{ fb}^{-1}$,
- Two methods are used:
 - binned S_{CP} [Phys. Rev. D 80, 096006]
 - unbinned kNN [J. Am. Stat. Assoc. 81, 799 (1986)]
- Results are consisted with CP symmetry.

The other approach: Energy test

Defined as the analogue of the potential energy of the field of charges.

$$T = \frac{1}{2} \iint (f_p(\vec{x}) - f_a(\vec{x}))(f_p(\vec{x}') - f_a(\vec{x}'))K(\vec{x}, \vec{x}')d\vec{x}d\vec{x}'$$

$$K(\vec{x}, \vec{x}') = exp(-\frac{(\vec{x} - \vec{x}')^2}{2\delta})$$

ET can be estimated without the need for any knowledge about the f_p or f_a : $T = \frac{1}{n(n-1)} \sum_{i,j>i}^n K(|\vec{x}_i - \vec{x}_j|) + \frac{1}{m(m-1)} \sum_{i,j>i}^n K(|\vec{x}'_i - \vec{x}'_j|) - \sum_{i=1}^n \sum_{j=1}^m K(|\vec{x}_i - \vec{x}'_j|)$

Distribution for $H_0: f_p = f_a$ is unknown - how to find **p-value**?

- T for overall samples **nominal T**.
- Set of T calculated for samples with random sign **permuted T**.

p - value = $\frac{\text{number of permuted } T \text{ values grater than nominal } T}{\text{total number of permuted } T \text{ values}}$

ET in LHCb: Phys. Lett. B740 (2015) 158, Phys. Lett. B769 (2017) 345, Phys. Rev. D102 (2020), 051101 , but only in mesons.

Jakub Ryżka

New approach: Kernel Density Estimation

a non parametric way to estimate the pdf of a random variable.

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \left(1 - \frac{|x|}{h} \right), |x| < h,$$

• $h_{opt}^i = \frac{k\hat{S}N^{-0.2}}{\sqrt{f(x_i)}}$, k = 1.06, \hat{S} - std of the sample, N - sample size

Never used for *CPV* searches: Szumlak T., Performance of the LHCb Vertex locator and the measurement of the forward-backward asymmetry in $B_d^0 \rightarrow K^{*0}(892)\mu^+\mu^-$ decay channel as a probe of New Physics, Krakow (2013)

Conclusions

- The searches for CPV in the charm sector have been intensified.
- The difference between CP asymmetries in $D^0 \rightarrow K^- K^+ / \pi^- \pi^+$: $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$
- New measurements of *CPV*:

$$a_{K^+K^-}^{dir} = (7.7 \pm 5.7) \times 10^{-4}$$

 $a_{\pi^+\pi^-}^{dir} = (23.2 \pm 6.1) \times 10^{-4}$

- The CP asymmetry is different from zero at 3.8σ level!
- The first evidence of direct CPV in single charm decay!

• Searches for CPV in charmed baryons are continuing...(Run 3 ...)

Back-up

Raw asymmetries and kinematic weighting

- The raw asymmetries are calculated from the least-square fit to mass distributions of the selected mesons,
- The decays channels must have the same kinematic distributions to cancel nuisance asymmetries,
- $A_{det}(\bar{K}^0)$ is estimated using the material map of LHCb, the mixing and scattering amplitudes of the neutral kaon system and validated on downstream $D^+ \rightarrow K_s^0 \pi^+$,

	$D^+ \to K^0_{\rm S} \pi^+_{trig} ~ ^w$	$D^+ \to K^- \pi^+ \pi^+_{trig} ~ ^w$	$D^0 \to K^- \pi^+ ~ ^w$	$D^0 \to K^- K^+ ~ ^w$
	$A^{\text{blind}} [10^{-4}]$	$A^{\text{blind}} [10^{-4}]$	A^{blind} [10 ⁻⁴]	$A^{\text{blind}} [10^{-4}]$
$15 \mathrm{~Dw}$	34.4 ± 44.5	-25.9 ± 11.5	-96.0 ± 14.3	37.3 ± 12.3
$16 \ \mathrm{Dw}$	71.1 ± 20.3	-7.8 ± 4.2	-128.6 ± 6.3	4.9 ± 5.2
$17 \mathrm{~Dw}$	48.2 ± 20.3	-6.5 ± 4.0	-116.6 ± 5.8	-9.5 ± 5.2
$18 \mathrm{Dw}$	60.2 ± 19.8	-22.5 ± 3.9	-117.7 ± 5.7	-1.1 ± 5.1
$15 \mathrm{~Up}$	-6.1 ± 54.1	-92.4 ± 15.5	-299.0 ± 18.0	-155.1 ± 15.5
$16 \mathrm{~Up}$	-39.2 ± 22.1	-81.7 ± 4.8	-287.4 ± 8.3	-166.2 ± 5.7
$17 \mathrm{~Up}$	-37.3 ± 20.3	-99.3 ± 4.2	-308.9 ± 5.9	-167.1 ± 5.3
$18 \mathrm{~Up}$	-31.0 ± 19.1	-79.2 ± 3.8	-294.8 ± 5.5	-173.2 ± 4.9