MASS MODIFICATIONS OF VECTOR MESONS IN A FINITE DENSITY MATTER

K. Ozawa (KEK/J-PARC)

Contents Introduction Experiment at J-PARC Summary

HADRONS MASS AND "QCD VACUUM"

- <u>Mass levels of hadrons</u> can be understood as the <u>excitation</u> <u>energy levels</u> from the vacuum
- The mass of the π meson is very small. It can be understood as a result of <u>spontaneous breaking of</u> <u>chiral symmetry in the vacuum</u>
- <u>Hadron properties</u> should be determined by the <u>vacuum</u> <u>properties</u>
- Thus, we need to study characteristics of "QCD vacuum" to study hadron mass

"QCD VACUUM" AND CONDENSATES

- One of the important properties of "QCD vacuum" is amount of antiquark quark condensations
 - $\langle \bar{\psi}\psi
 angle$: Expectation value of the vacuum
 - Order parameter of chiral symmetry
- The amount of the condensation in "QCD vacuum" depends on temperature and density of the matter
- However, anti-quark quark condensations itself are not observable
 - Realistic observable should be figured out

VECTOR MESON MASS AND $\langle \bar{q}q \rangle$

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014).

Vector meson mass spectra can be connected with anti-quark quark condensate

Two point correlation functions after the Borel transformation:

$$\begin{split} G_{OPE}(M^2) &= \int_0^\infty \exp(-\frac{s}{M^2}) \underbrace{\text{(s)ds}}_{\text{Spectral Function}} \\ \text{QCD sum rule for ϕ meson channel:} & \underline{\text{Mass spectra should}}_{\text{be measured}} \\ G_{OPE}(M^2) &= \frac{1}{4\pi^2} (1 + \frac{\alpha_s}{\pi}) - \frac{1}{M^2} \frac{6m_s^2}{4\pi^2} + \frac{1}{M^4} (2m_s(\overline{ss}, p_N) + \frac{1}{12} \langle \frac{\alpha_s}{\pi} G^2 \rangle_{\rho_N}) - \frac{1}{M^6} \frac{112\pi}{81} \alpha_s(\overline{ss}, \overline{ss}) \rho_* \\ &+ \frac{1}{M^4} A_2^s M_N \rho - \frac{1}{M^6} \frac{5}{3} A_4^s M_N^3 \rho + \cdots \end{split}$$

Φ N INTERACTIONS AND MASS

- Mass of ϕ meson in a QCD medium can be studied in terms of $\,\phi N$ interactions
- ALICE shows the attractive strong interaction between a proton and a ϕ meson using two-particle correlations measurements
 - Consistent with LEPS results (W.C. Chang et al., PLB658(2008), 209)
 - Significantly larger than CLAS results (I. I. Strakovsky et al., PRC101(2020), 045201)

 - We are preparing a new experiment to measure mass spectra of vector mesons in nucleus at J-PARC

METHOD OF THE EXPERIMENT

NEW EXPERIMENT

- A prior experiment is performed at KEK-PS
 - The experiment shows yield excess in e+e- invariant mass and it can be understood as mass modifications of ϕ mesons
- At J-PARC, upgrades of the KEK-PS E325 experiment are being carried out

J-PARC (Japan Proton Accelerator Research Complex)

MR 30 GeV Synchrotron

RCS 3 GeV Synchrotron

400 MeV Linac

Hadron Experimental Facility

	Name	Species	Energy	Intensity			
	K1.8	π^{\pm} , K $^{\pm}$	< 2.0 GeV/c	~10 ⁵ Hz for K⁺			
	K1.8BR	π [±] , K [±]	< 1.0 GeV/c	$\sim 10^4$ Hz for K ⁺			
	K1.1	π [±] , K [±]	< 1.1 GeV/c	$\sim 10^4$ Hz for K ⁺			
New	High-p	proton	30GeV	~ 10 ¹⁰ Hz			
Beamline		Unseparated	< 20GeV/c	~ 10 ⁸ Hz			

J-PARC E16 EXPERIMENT

- Measurements of e⁺e⁻ pair invariant mass spectra in nucleus
- 10 times larger statistics compared to the KEK experiment
 - 10¹⁰ protons per spill (10 times higher than KEK)
 - Counting rate: 5 kHz/mm² (maximum)
- Two times better resolution than KEK
 - Larger magnetic field
 - Better Position resolution (~100 µm)

GEM Tracker

Electron ID

300x300mm² GEM with CsI

SPECTROMETER

GEM TRACKER (GTR)

- Ionization electrons in the drift gap are collected and amplified by GEMs.
- Charge collected on to 2D strip readout.
 - X: 350um pitch
 - Sensitive to bending direction.
 - 100 um resolution required.
 - Y: 1400um pitch

K. Ozawa, Jagiellonian Symposium

HBD (HADRON BLIND DETECTOR)

- Based on PHENIX HBD.
- CF4 serves as radiator and amplification gas
 - Radiator 50 cm. / p.e. ~ 11
- Gas Electron Multiplier (<u>GEM</u>) for amplification
- **<u>CsI</u>** is evaporated on top GEM
 - Photocathode (>~6eV)

STATUS OF THE EXPERIMENT

- First beam: May 24, 2020.
- Commissioning runs: June 2020 and June 2021
 - All detectors, triggers, and DAQ worked well
 - Detector performance in commissioning data
- In the next year, we will improve beam conditions and take physics data

Photo of Spectrometer

SUMMARY

- Origin of hadron mass is one of the important topics in hadron physics study to understand our world. Hadron mass is dynamically generated by a spontaneous breaking of chiral symmetry in the medium and closely related with properties of QCD medium
- We are preparing a new experiment to study mass spectra of vector mesons in nucleus, since mass spectra of the vector mesons can be modified due to a finite density effects
- We took pilot data and evaluate detector performance. Detectors work well. We are planning to take physics data in the early next year.

2022/07

16) BACK UP

K. Ozawa, Jagiellonian Symposium

2022/07/12

FUTURE: STUDY OF HIGH-DENSITY MATTER

J-PARC HEAVY ION PROJECT

- Main Physics topics
 - QCD phase structure in high density region
 - Study of strangeness systems and hyperon interactions
- Heavy Ion Beam specifications
 - Beam Energy: $\sqrt{S_{NN}} \sim 2 5 \text{ GeV}$
 - Species: Up to Uranium
 - Maximum Beam Intensity: 10¹¹ Hz

MEASUREMENTS OF ELECTRON PAIRS IN HI

- Di-electron measurements in heavy-ion collisions with spectrometer upgrades
- 10⁸ beam/spill, IR rate ~ 50 kHz with 0.035 mm Au target (~0.1% int. length)
- First Proposal is submitted to J-PARC Program Advisory Committee

HADRON EXPERIMENTAL FACILITY

	Name	Species	Energy	Intensity
	K1.8	π^{\pm} , K $^{\pm}$	< 2.0 GeV/c	$\sim 10^5$ Hz for K ⁺
	K1.8BR	π^{\pm} , K $^{\pm}$	< 1.0 GeV/c	$\sim 10^4$ Hz for K^+
	KL	K _L	2.0 GeV/c (Ave.)	$\sim 10^7$ Hz for K^0
New	High-p	primary	30GeV	$\sim 10^{10}\mathrm{Hz}$
Beamline		Unseparated	< 20GeV/c	$\sim 10^8 \mathrm{Hz}$

HADRON PHSYICS

Understand our world based on quarks and its interactions

Quark:

Current mass (a few MeV/c²) (Higgs Mechanism) Colored Quarks are confined Interaction: Quantum-Chromo-Dynamics

Proton (Hadron) : Mass of 940MeV/c²

Has Constituent quarks inside Interaction: Hadron interactions

What we want to know?

Naïve understandings Color confinement Spontaneous breaking of chiral symmetry and Dynamical mass generations the presence of π , K, η as NG bosons

How is hadron mass generated?

What are effective degree of freedom inside hadrons? How are hadron interactions understood from quarks?

Silicon Strip Detector

- Run0
 - Existing 6 SSDs used for another J-PARC experiment.
 - ATLAS sensor
 - Sensitive area: 61 mm x 62mm
 - Strip pitch 80 um. (1D)
 - Timing Resolution 4ns
 - It has large unwanted frame.
 - The readout ASIC is APV-25
- Run1
 - Starting collaboration with FAIR-CBM
 - CBM developed sensor
 - Sensitive area: 60 mm x 60 mm
 - Strip pitch 50um (Double sides)
 - Almost no frame
 - The readout ASIC is a CBM special chip
 - Developed for the streaming DAQ, however it can be used for a triggered DAQ

LG (Lead Glass Calorimeter)

- Reuse from TOPAZ
 - ~300 at the 1st stage.
 - ~1000 in total
 - We have all we need.
- Expected Rejection Power
 - ~25 offline (energy dep. th.)
 - ~10 online (fixed th.)

We've got all we need.

