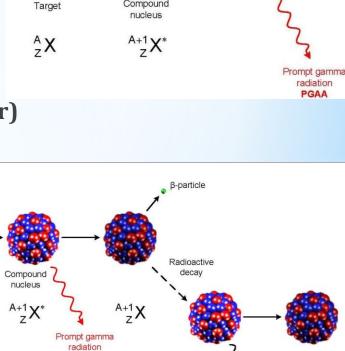
Neutron Activation Analysis in the environmental monitoring, homeland security and medicine

Michał Silarski

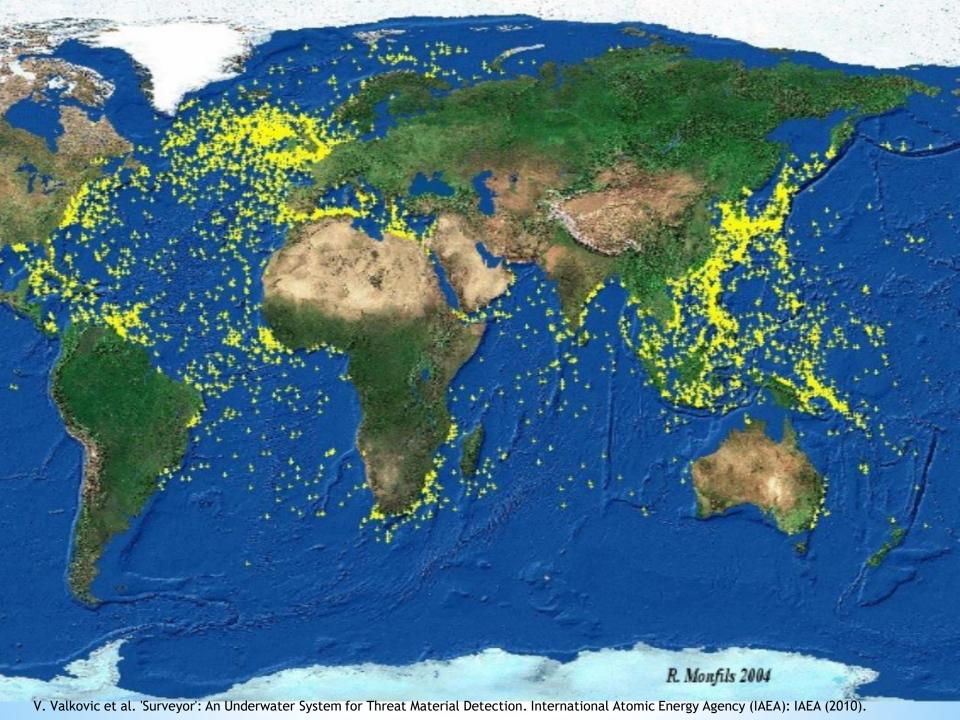
UJ Particle Physics Phenomenology and Experiments Seminar, Kraków, 04.04.2022

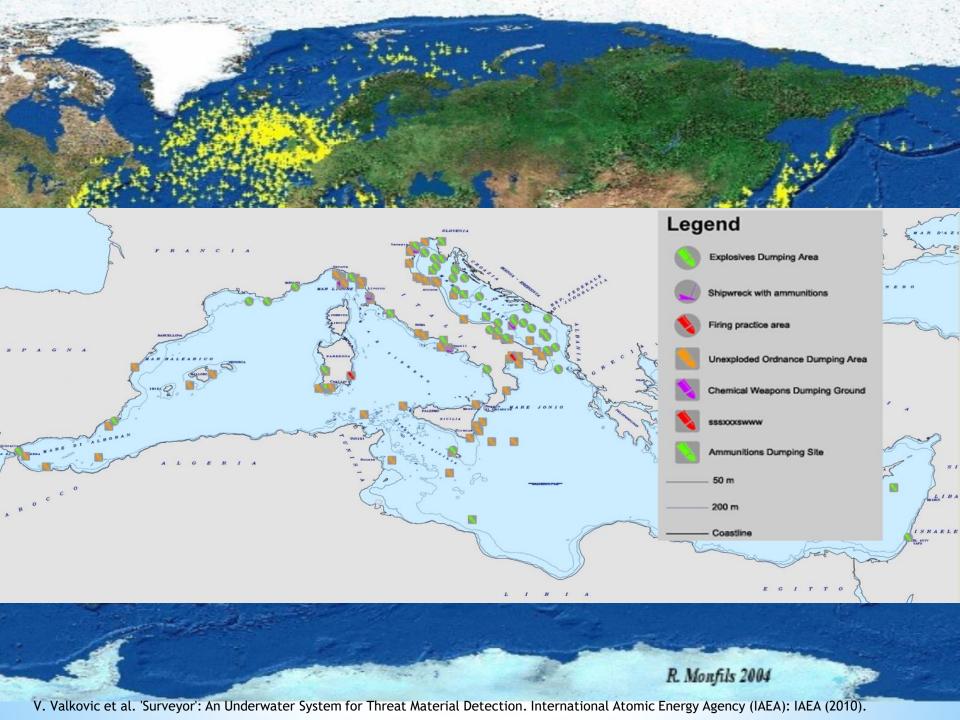

Introduction

neutron

 $^{A}_{Z}X$

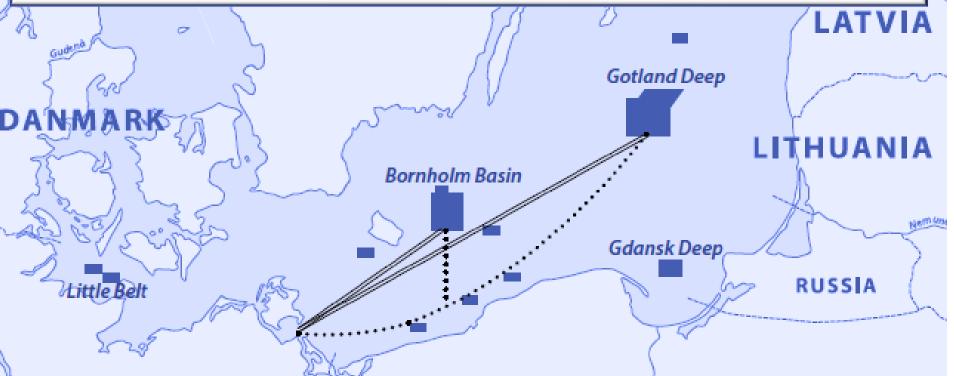
- Neutrons: particles with great application potential
 - ✓ highly penetrating (nondestructive probes)
 - ✓ "sensitive" to light atoms
- Some applications:
 - ✓ Neutron radiography
 - **✓** Oncology (neutron therapy, breast cancer detector)
 - **✓** Counter-terrorism/IED detection



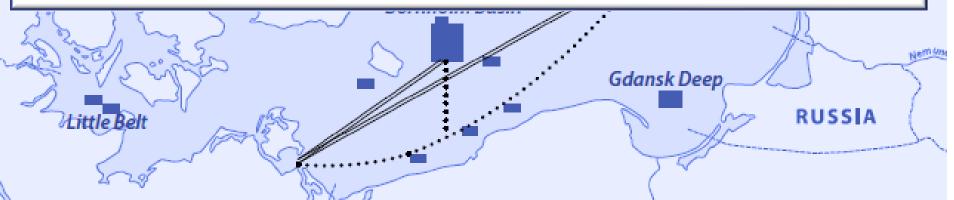


https://nmi3.eu/neutron-research/techniques-for-/chemical-analysis.html

*PART I: Underwater non-invasive threads detection



- **❖** Menace to merchant navy
- ❖ Serious threat for people and environment ("Fake amber" on the coast, mustard gas "fished" out of the sea)
- **❖** Clearing the sea bottom due to the construction of Nord Stream gas pipeline : 100 million euro



* Motivation

- **❖** Menace to merchant navy
- ❖ Serious threat for people and environment ("Fake amber" on the coast, mustard gas "fished" out the sea)
- **❖** Clearing the sea bottom due to the construction of Nord Stream: 100 million euro

Detection methods for underwater hazardous materials: sonars / robots

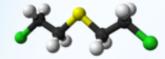
- Recognition of shapes and density of objects ("chemically blind" methods)
- They usually require confirmation by a qualified sapper

* Motivation

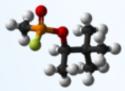
- **❖** Menace to merchant navy
- ❖ Serious threat for people and environment ("Fake amber" on the coast, mustard gas "fished" out the sea)
- **❖** Clearing the sea bottom due to the construction of Nord Stream: 100 million euro

Detection methods for underwater hazardous materials: sonars / robots

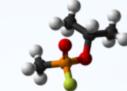
- Recognition of shapes and density of objects ("chemically blind" methods)
- They usually require confirmation by a qualified sapper
- Expensive, inefficient and slow

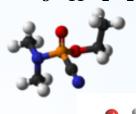

Gdansk Deep

Possible alternative/improvment: Neutron Activation Techniques

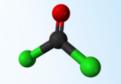

* Motivation

Main agents to deal with:


Mustard gas (C₄H₈Cl₂S)


Soman $(C_7H_{16}FO_2P)$

Sarin $(C_4H_{10}FO_2P)$


Tabun $(C_5H_{11}N_2O_2P)$

000

 $TNT (C_7H_5N_3O_6)$

Fosgen (COCl₂)

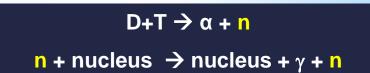
 $VX (C_{11}H_{26}NO_2PS)$

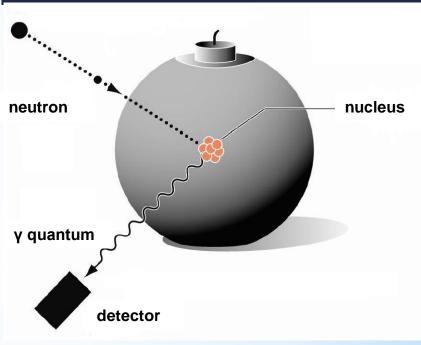
High economic and environmental costs have been preventing so far any activities aiming at extraction of these hazardous substances.

* Neutron Activation Techniques

Novel methods of nondestructive chemical threat detection based on neutron activation:

Thermal neutron capture (sources, D+Dgenerators)




Neutron inelastic scattering (D+D/D+T generator)

Excited nuclei emit gamma quanta of energy characteristic of the element

Relative content of elements ⇔ Stoichiometry

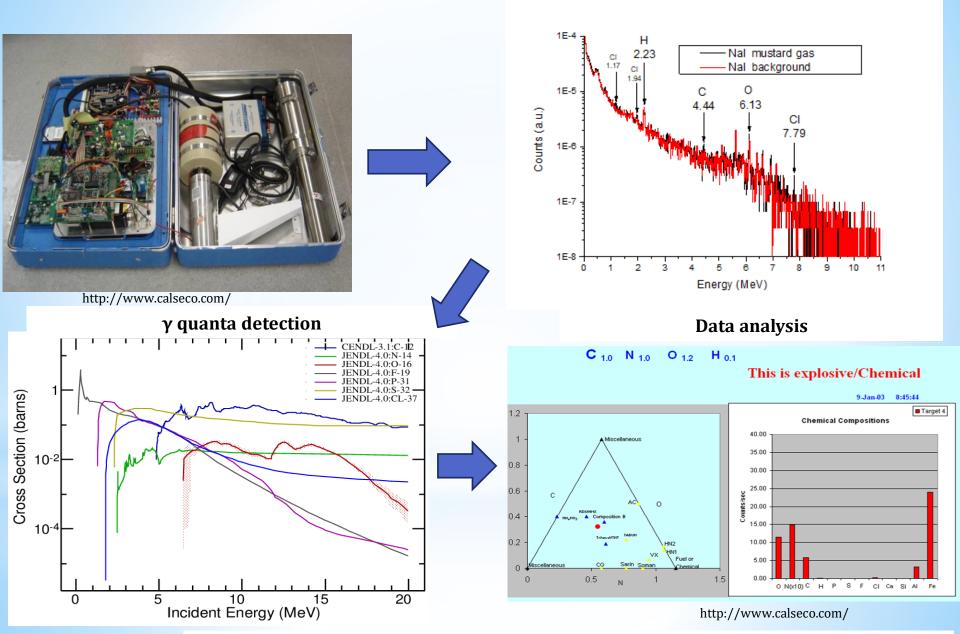
Neutron Activation Techniques

Signature:

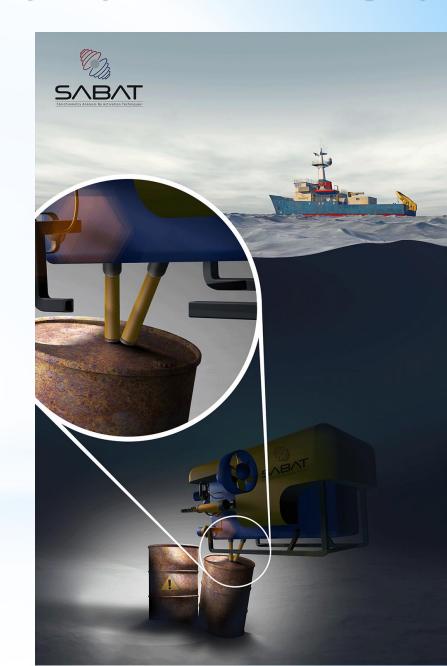
gamma quanta of the following nuclei: **C** (4.44 MeV), **O** (6.13 MeV), **N** (10.83 MeV), **Cl** (1.17 MeV, 7.79 MeV), **S** (2.32 MeV), **P** (1.27 MeV), **F** (0.11 MeV, 0.197 MeV)

High penetration allows detection of explosives which are hidden in vehicles, buried, etc.

Drawbacks:

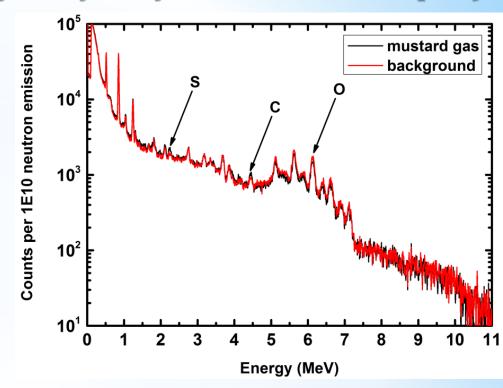

- Small cross sections for some of the elements
- Decreased mobility due to detector cooling
- High neutron flux needed
- Insensitivity to the structure of molecule
- High neutron attenuation in water
- High background from oxygen and hydrogen

P. Saska, Szybkobieżne Pojazdy Gąsienicowe (24) nr 1, 5 (2009)


Neutron Activation Techniques

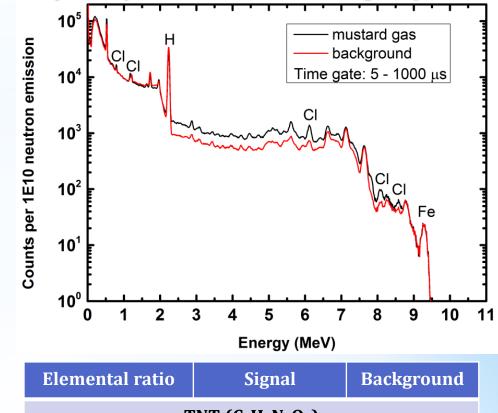
Comparison with database of known substances & identification

The SABAT project (Stochiometry Analysis By Activation Techniques)


- The 14.1 MeV neutron generator with α particle detection
- Neutron and γ quanta attenuation in water minimized by guides filled with air or some other gas
- Pulsed generator & correlated α particles detection ⇔ tomographical picture of the chemical composition
- Changeable position, length and orientation of guides
- Position sensitive detector (scintillator)

(M. Silarski, P. Moskal, Patent PL 223751; EP 15738491.8;U\$4 15/509,013)

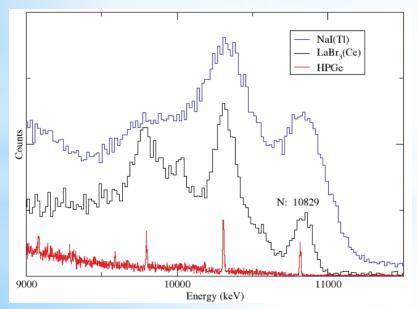
The SABAT project (Stochiometry Analysis By Activation Techniques)


- MCNP simulations:
 - pulsed D-T generator (Thermo Scientific P385)
 - 2" x 2" LaBr₃:Ce detector
 - mustard gas container: 100 x 100 x 40 cm³
 - measrement time: 10 s
- Separation of the neutron capture
 γ quanta allows for identification
- Neutron scattering (γ quanata) may enable tomografic image reconstruction

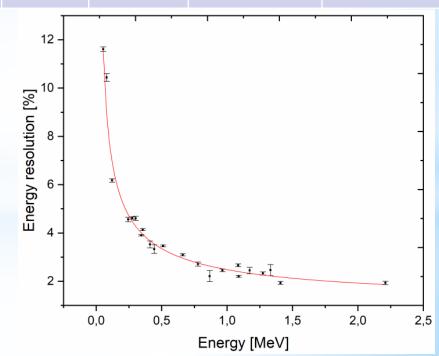
Projekt SABAT (Stochiometry Analysis By Activation Techniques)

- MCNP simulations:
 - pulsed D-T generator (Thermo Scientific P385)
 - 2" x 2" LaBr₃:Ce detector
 - mustard gas container: 100 x 100 x 40 cm³
 - measrement time: 10 s
- Separation of the neutron capture
 γ quanta allows for identification
- Neutron scattering (γ quanta) may enable tomografic image reconstruction

	0 0			
Elemental ratio	Signal	Background		
Non-elastic scattering				
S(2.23)/O(6.13)	0.36 ± 0.04	0.22 ± 0.04		
Cl(2.12)/O(6.13)	0.45 ± 0.04	0.29 ± 0.02		
C(4.44)/O(6.13)	0.31 ± 0.03	0.19 ± 0.04		
Neutron capture				
Cl(6.13)/H(2.23)	0.053 ± 0.003	0.014 ± 0.002		
P. Sibczyński, M. Silarski et al., JINST 14 (2019) P09001P09001				



Signal	Background				
TNT (C ₇ H ₅ N ₃ O ₆)					
0.36 ± 0.04	0.133 ± 0.02				
0.0112 ± 0.0028	0				
CLARK I (C ₁₂ H ₁₀ AsCl)					
0.47 ± 0.05	031 ± 0.03				
CLARK II (C ₁₂ H ₁₀ AsN)					
0.56 ± 0.05	031 ± 0.03				
	Signal FNT ($C_7H_5N_3O_6$) 0.36 ± 0.04 0.0112 ± 0.0028 ARK I ($C_{12}H_{10}AsCl$) 0.47 ± 0.05 ARK II ($C_{12}H_{10}AsN$)				

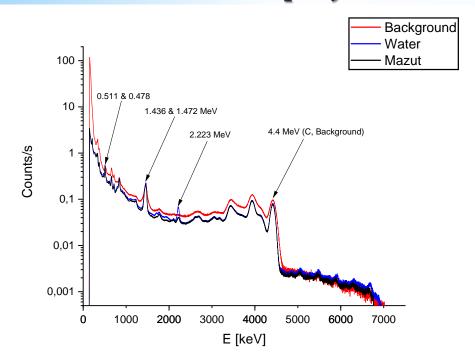

The SABAT project (Stochiometry Analysis By Activation Techniques)

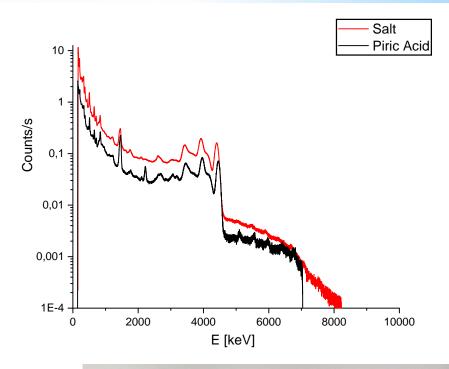
- Mobility and compactness requires substitution of semiconductor detectors
- ❖ Natural candidates: inorganic scintillators

	BGO	Nal:Tl	LaCl ₃ :Ce	LaBr ₃ Ce:Sr
Average atomic number	28	32	28	41
Density [g/cm ³]	7.1	3.7	3.9	5.3
Energy resolution (@662 keV) [%]	12	7	3.3	2.8

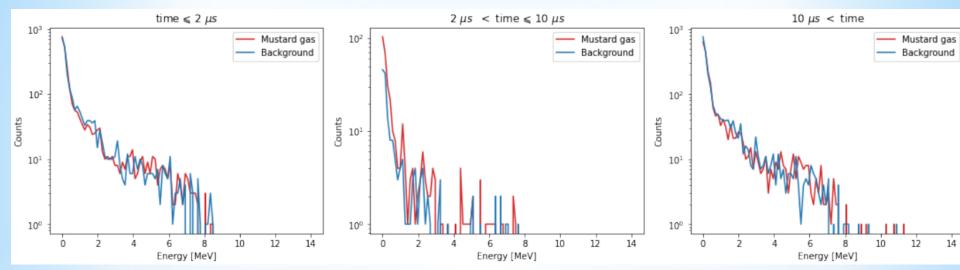
IEEE Nuclear Science Symposium, San Diego, CA, 10/29/2006, 11/04/2006

A. Miś, master thesis, Jagiellonian University (2020)


Status of the SABAT project



Status of the SABAT project



	Maz	ut	Water		Picric Ac	cid ($C_6H_3N_3O_7$)
	R	σ_{R}	R	σ_{R}	R	σ_{R}
H/O	15,79	0,58	68,81	0,85	61,7	1,8
C/O	305,0	8,4	416,8	5,5	452,15	9,64
H/C	5,05	0,24	14,84	0,44	18,72	0,58

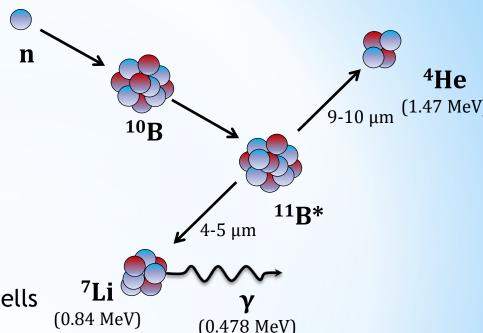
Status of the SABAT project

- A first attempt to use neural networks to support the identification of an illicit material (based on Monte Carlo simulations)
- Input data: histograms of detector energy depositions for 3 time slots after the emission of a neutron:

Feedforward Neural Network with two hidden layers with 16 and 8 neutrons, respectively (with L2 regularization)

	Dataset type	Sample size	Batch size	Learning rate	Epochs	Mean accuracy	$\sigma_{Accuracy}$	Mean loss	σ_{Loss}
$LaBr_3:Ce$	A	20000	750	0.0001	100	0.99781	0.00260	0.02456	0.01244
LaDi3 . Ce	В	5000	750	0.0001	100	1.00000	0.00000	0.00632	0.00322
NaI:Tl	A	2000	750	0.0001	100	0.99246	0.00708	0.03745	0.02450
<i>IV (d.I. I. t.</i>	В	5000	750	0.0001	100	0.99993	0.00013	0.00936	0.00538
BGO	В	5000	750	0.0001	100	0.99999	0.00003	0.00929	0.00556
LSO	В	5000	1000	0.0001	100	0.99993	0.00017	0.00642	0.00383

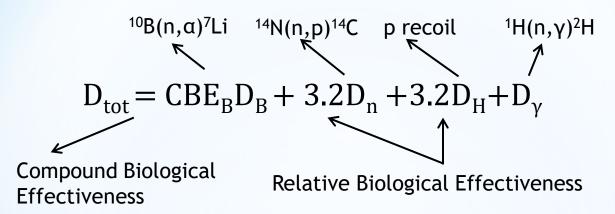
*PART II: Boron Neutron Capture Therapy


The Boron Neutron Capture Terapy

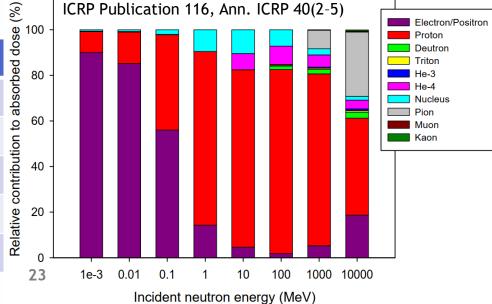
- Therapy used against highly malignant and therapeutically resistant tumors:
 - gliobastoma multiforme
 - malignant melanoma
 - head and neck recurrent cancers
 - Malignant pleural mesothelioma
- Irradiation with (epi)thermal neutrons
- 10B transfered selectively to the tumor cells
- High LET within a single cell

Nuclide	Reaction	σ [b]			
⁶ Li	(n,α)	940			
¹⁰ B	(n,α)	9835			
¹⁵⁵ Gd	(n,γ)	61100			
¹⁵⁷ Gd (n,γ) 259000					
(Wolfgang A.G. Sauerwein, A. Wittig, R.					

Moss, Y. Nakagawa "Neutron capture


therapy", Springer)

The Boron Neutron Capture Terapy


❖ So far only ¹⁰B and Gd were considered as "targets" for NCT

The in-air neutron beam recommendations by the International Atomic Energy

Agency:

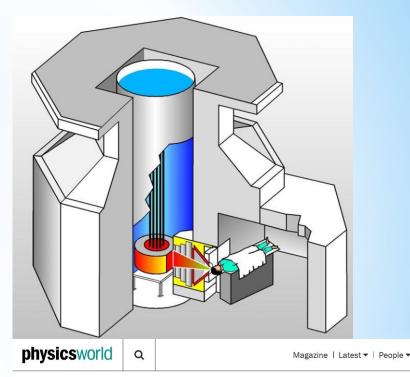
Parameter	Recommendations
$\Phi_{\rm epi}$ [cm ⁻² s ⁻¹]	>109
$\Phi_{epi}/\Phi_{thermal}$	> 20
$\Phi_{\rm epi}/\Phi_{\rm fast}$	>100
D_{fast}/Φ_{epi} [Gy cm ²]	< 2*10 ⁻¹³
D_{γ}/Φ_{epi} [Gy cm ²]	< 2*10 ⁻¹³

H. Naeem et al., Journal of the Korean Physical Society, 70 (2017) 816

Neutron sources for BNCT

Reactors

- ❖ High neutron flux (e.g. Maria: ~10¹⁴ cm⁻²s)
- Expensive and complex
- low public acceptability
- require complicated licensing procedures


Reactor BNCT beams

core neutrons (fast→epithermal)

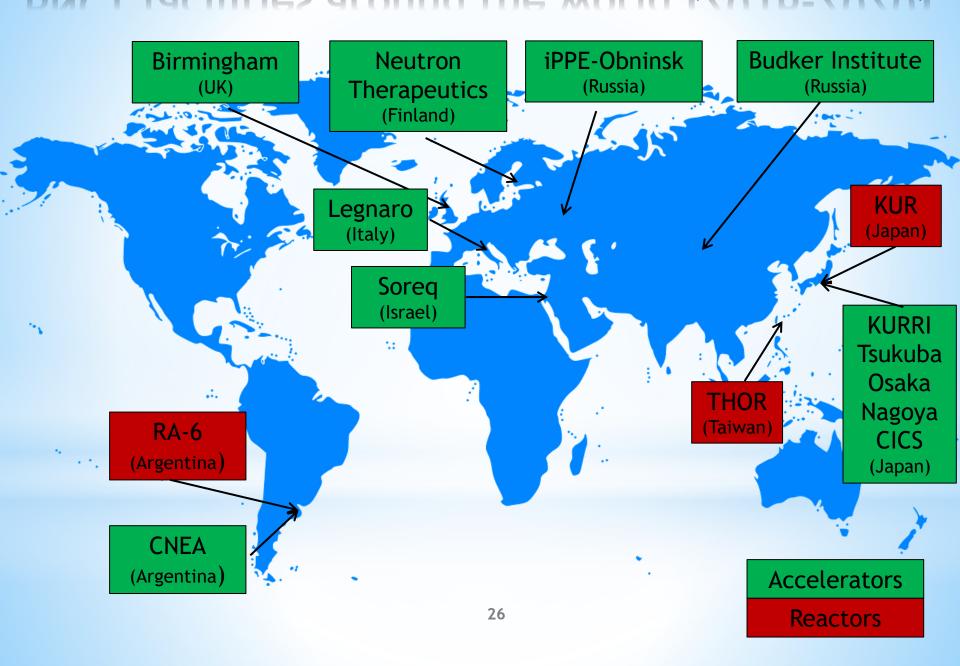
fission converter $(thermal \rightarrow epithermal)$

Accelerator sources

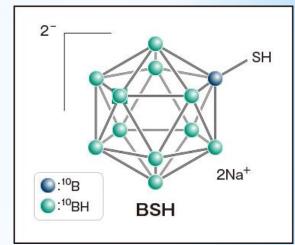
- Expensive
- Require a lot of space
- Most popular reactions: $^{7}\text{Li}(p,n)^{7}\text{Be}$ and $^{9}\text{Be}(p,n)^{9}\text{B}$
- Target cooling problems for high proton intensity

Boron neutron capture therapy progresses towards clinical cancer treatments

17 May 2019 Tami Freeman



BNCT facilities around the world (2016)



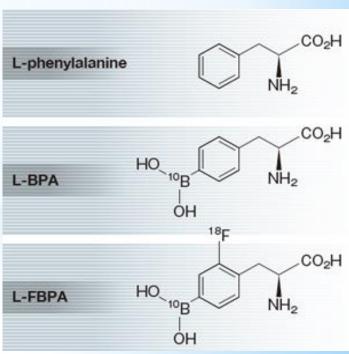
BNCT facilities around the world (2016-2020)

Boron carriers

- ❖ Selective accumulation (Tumor/Normal >3) with ¹⁰B concentration of 20 to 40 ppm
- Low toxicity
- Not metabolized in the tumor
- ❖ No pharmaceutical effects themselves (boron delivery molecule only)
- BSH (disodium mercaptoundecahydrododecaborate)
 - Low accumulation inside tumor cells (it stays in the intercellular spaces)
- L-BPA (L-p-Boronophenylalanine)
 - Administered combined with a water-soluble substance such as D-fructose
 - does not accumulate in slowly proliferating malignant cells

Pose and boron distribution monitoring

Magnetic Resonance Imaging (MRI)

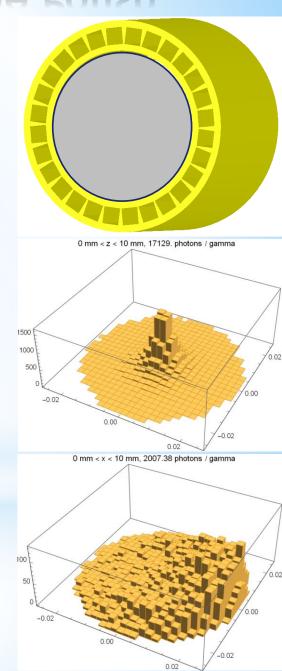

- Non-invasive imaging of boron distribution
- Sensitive to ¹⁰B and ¹¹B isotopes

Activation Gamma Radiation Analysis

- Gamma quanta due to neutron capture on 10 B (E_v = 0.478 MeV)
- Radiation of tissue activation (H,C,N,...)
- A fast method that allows in vivo imaging also during therapy

Positron Emission Tomography

- Boron carrier labeled with B⁺ active element:
- L-F-Boronophenylalanine [Imahori Y. et al. J Nucl
 Med. 39 (1998) 325]
- ⁶⁴Cu-labeled BSH-3R-DOTA
 [Y. Iguchi et al., Biomaterials 56 (2015) 10]
- Non-invasive imaging of boron distribution in the patient's body at each stage of therapy (resolution ~ 4-6 mm)

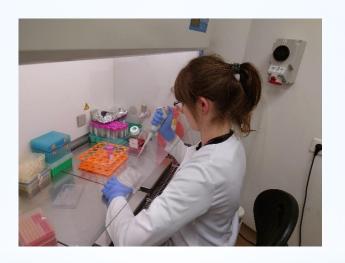

28

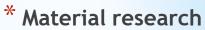
PGRA system developed within the Polish

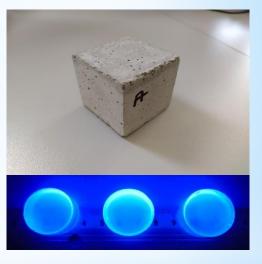
Consortium For the BNCT

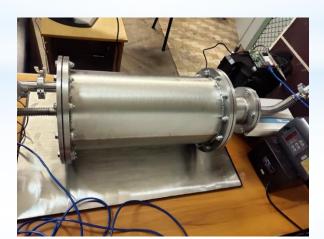
- ❖ No dose monitoring system based on PGRA exists yet
- Trials to date have included SPECT and Compton cameras optimized for the 478 keV boron capture line
- The system based on:
 - ✓ Scintillation detectors with LaBr₃:Ce:Sr crystals
 - Readout by a silicon photomultiplier array (positional sensitive detector)
 - Reconstruction of the momentum direction of the registered gamma quantum
 - ✓ Active anti-Compton shields
 [M. Gierlik et al., Nuclear Instruments and Methods in Physics Research A 788 (2015) 54-58]
 - ✓ The use of detectors analogous to Compton cameras

[M. Kim, et al., Nuclear Engineering and Technology, https://doi.org/10.1016/j.net.2020.07.010]




* Neutron Activation Analysis Laboratory


* Homeland security



*Thank You for attention

Goya, Witches sabbath