Recent results and status of the XENON dark matter experiment

Michelle Galloway (Universität Zürich)

Krakow Jagiellonian University Particle Physics Phenomenology and Experiments Seminar 20 December 2021

Outline

- Overview of the XENON experiment
- Detection channels and recent results
- The low-energy excess
- The next stage XENONnT

The XENON Collaboration

27 institutions from 11 countries

The XENON Project

The XENON Experiment

Laboratori Nazionali del Gran Sasso 1500 m overburden (3600 m.w.e.)

LNGS hall B

The XENON Experiment

Laboratori Nazionali del Gran Sasso 1500 m overburden (3600 m.w.e.)

LNGS hall B

XENON1T

Dual-phase Time Projection Chamber

(liquid/gas xenon TPC)

Dual-phase Time Projection Chamber

(liquid/gas xenon TPC)

Dual-phase Time Projection Chamber

(liquid/gas xenon TPC)

Nuclear Recoils (NR) neutron background; WIMPs, coherent neutrino scattering

Electronic Recoils (ER) gamma, beta backgrounds; neutrino physics, solar axions, boson dark matter

Nuclear Recoils (NR) neutron background; WIMPs, coherent neutrino scattering

Electronic Recoils (ER) gamma, beta backgrounds; neutrino physics, solar axions, boson dark matter

Nuclear Recoils (NR) neutron background; WIMPs, coherent neutrino scattering

Discriminate NR from ER events; candidates above small neutron and instrumental backgrounds.

Electronic Recoils (ER) gamma, beta backgrounds; neutrino physics, solar axions, boson dark matter

Nuclear Recoils (NR) neutron background; WIMPs, coherent neutrino scattering

< 100 events/(t/yr/keV_{ee})

Discriminate NR from ER events; candidates above small neutron and instrumental backgrounds.

Search for excess above known, well-modelled ER backgrounds.

The XENON Physics Program

LIGHT DARK MATTER PRL 123, 241803 PRL 123, 251801

SOLAR ⁸B CEvNS PRL 126, 091301

DOUBLE ELECTRON CAPTURE Nature 568, 532

NEUTRINOLESS DOUBLE-β DECAY

EPJ C (2020) 80:785 (analysis R&D)

BOSONIC DARK MATTER PRD 102, 072004

SOLAR AXIONS PRD 102, 072004

NEUTRINO MAGNETIC MOMENT PRD 102, 072004

TECHNICAL ANALYSIS PAPERS

> PRD 99, 112009 PRD 100, 052014

Nuclear recoil searches

WIMP dark matter

Multiple observations via gravitational interactions indicate 85% of the matter in the Universe is dark.

WIMPs: Weakly Interacting Massive Particles favoured by supersymmetry (Beyond Standard Model) new physics expected at GeV masses with **weak-scale cross section** (thermal relic - "**WIMP miracle**")

Search for a scattering interaction in terrestrial detectors with target nuclei.

NR-WIMP cross section vs mass parameter space

 10^{3}

 $N \sim 1/m_X$

XENON1T (2018)

10²

Spin-independent WIMP limits

Coherent neutrino-nucleus scattering

• Atmospheric neutrinos

- Search for ⁸B neutrinos
- Use measured flux (Borexino, SNO) to constrain xenon lowenergy detector response
- constrain non-standard neutrino interactions
- set limit on DM-nucleus

expectation: 2.1 ⁸B events (6 found, consistent with background)

The primary scintillation signal S1 limits the threshold. Lower the threshold (from 3 to 2 PMT hits) 5% efficiency at 0.5 keV cutoff

Probing lower WIMP masses

Phys. Rev. Lett. 126 (2021) 091301

Drop the discrimination requirement (S2/S1) and set limits with the S2 signal. Can also look for secondary emission (Migdal effect) in S2-only data. Electronic recoil searches

Two-neutrino double electron capture

$T^{2vECEC} = (1.8 \pm 0.5 \text{stat} \pm 0.1 \text{sys}) \times 10^{22} \text{ y}$

highlights sensitivity to rare processes

Two-neutrino double electron capture

Two-neutrino double electron capture

10 components

Solar axions:

Arise from Peccei-Quinn solution to strong-CP problem in QCD: pseudo-NG boson

Solar axions:

Arise from Peccei-Quinn solution to strong-CP problem in QCD: pseudo-NG boson

Enhancement of the neutrino magnetic moment: Majorana or Dirac nature

Solar axions: Arise from Peccei-Quinn solution to strong-CP problem in QCD: pseudo-NG boson **Enhancement of the neutrino magnetic moment:** Majorana or Dirac nature

Bosonic dark matter (axion-like particles, dark photons):

keV-scale dark matter, mediator of dark sector (dark photon)

Solar axions

Production

Solar axions - emerge with keV-scale energies (not dark matter)

QCD:
$$m_{\rm a} \simeq \frac{6 \times 10^6 \text{ GeV}}{f_{\rm a}} \text{ eV/c}^2$$

Solar axions

Production

ABC: atomic recombination & de-excitation, bremsstrahlung, and Compton interactions

axion-electron

Solar axions - emerge with keV-scale energies (not dark matter)

CD:
$$m_{\rm a} \simeq \frac{6 \times 10^6 \text{ GeV}}{f_{\rm a}} \text{ eV/c}^2$$

Q

Solar axions

Production

ABC: atomic recombination & de-excitation, bremsstrahlung, and Compton interactions

Primakoff effect

gae

axion-electron

Solar axions - emerge with keV-scale energies (not dark matter)

CD:
$$m_{\rm a} \simeq \frac{6 \times 10^6 \text{ GeV}}{f_{\rm a}} \text{ eV/c}^2$$

Q
Solar axions

Production

ABC: atomic recombination & de-excitation, bremsstrahlung, and Compton interactions

Primakoff effect

Nuclear de-excitation

*g*ae

axion-electron

 $g_{a\gamma}$ axion-photon g_{an}

axion-nucleon

Solar axions - emerge with keV-scale energies (not dark matter)

QCD:
$$m_{\rm a} \simeq \frac{6 \times 10^6 \text{ GeV}}{f_{\rm a}} \text{ eV/c}^2$$

M.Galloway | Krakow Jagiellonian Seminar 2021

Solar axions

Production

Detection

M.Galloway | Krakow Jagiellonian Seminar 2021

Solar axions

Production

Detection

M.Galloway | Krakow Jagiellonian Seminar 2021

Enhanced neutrino magnetic moment

Neutrinos are massless in the SM, but oscillations indicate mass, thus a magnetic moment.

solar neutrino (pp) - electron scattering $\frac{d\sigma_{\mu}}{dE_{r}} = \mu_{\nu}^{2} \alpha \left(\frac{1}{E_{r}} - \frac{1}{E_{\nu}}\right)$

Enhanced neutrino magnetic moment

Neutrinos are massless in the SM, but oscillations indicate mass, thus a magnetic moment.

solar neutrino (pp) - electron scattering $\frac{d\sigma_{\mu}}{dE_{r}} = \mu_{\nu}^{2} \alpha \left(\frac{1}{E_{r}} - \frac{1}{E_{\nu}}\right)$

Minimally-extended Standard Model:

$$\mu_{\nu} = \frac{3eG_F m_{\nu}}{8\pi^2 \sqrt{2}} = 3 \times 10^{-19} \mu_B \times \left(\frac{m_{\nu}}{1 \,\mathrm{eV}}\right)$$

Enhanced neutrino magnetic moment

Neutrinos are massless in the SM, but oscillations indicate mass, thus a magnetic moment.

solar neutrino (pp) - electron scattering $\frac{d\sigma_{\mu}}{dE_{r}} = \mu_{\nu}^{2} \alpha \left(\frac{1}{E_{r}} - \frac{1}{E_{\nu}}\right)$

Minimally-extended Standard Model:

$$\mu_{\nu} = \frac{3eG_F m_{\nu}}{8\pi^2 \sqrt{2}} = 3 \times 10^{-19} \mu_B \times \left(\frac{m_{\nu}}{1 \,\text{eV}}\right)$$

A larger magnetic moment would imply new physics, and possibly solve Dirac vs Majorana.

Enhancement:

$$\mu_{\nu}\gtrsim 10^{-15}\mu_{\rm B}$$
 \longrightarrow Majorana fermion

Thermal DM, non-relativistic: deposited energy is rest mass of particle.

$$\begin{split} R \simeq \frac{1.5 \times 10^{19}}{A} g_{\rm ae}^2 \left(\frac{m_{\rm a}}{\rm keV/c^2}\right) \left(\frac{\sigma_{\rm pe}}{\rm b}\right) \rm kg^{-1} \rm d^{-1} \\ \\ \text{Detection via axioelectric effect} \\ \\ \sigma_{\rm ae} = \sigma_{\rm pe} \frac{g_{\rm ae}^2}{\beta} \frac{3E_{\rm a}^2}{16\pi\alpha m_{\rm e}^2} \left(1 - \frac{\beta^{2/3}}{3}\right) \end{split} \end{split}$$

$$R \simeq \frac{4.7 \times 10^{23}}{A} \kappa^2 \left(\frac{\text{keV}/c^2}{m_{\text{V}}}\right) \left(\frac{\sigma_{\text{pe}}}{\text{b}}\right) \text{kg}^{-1} \text{d}^{-1}$$

Kinetic mixing with SM photons

$$\sigma_{
m V}\simeq rac{\sigma_{
m pe}}{eta}\kappa^2$$

M.Gallowa<mark>y | Krak</mark>ow Jagiellonian Ser<mark>nin</mark>ar 2021

Background model and inference

Background model B_o Partitioned into two datasets and fit simultaneously

SR1_a: activated backgrounds, peaks SR1_b: allows to constrain the dominant ²¹⁴Pb background at low energies

- Unbinned profile likelihood
- Likelihood of 2 partitions combined $\mathcal{L} = \mathcal{L}_{a} \times \mathcal{L}_{b}$
- Test statistic q for inference

$$q(\mu_s) = -2\ln \frac{\mathcal{L}(\mu_s, \hat{\hat{\mu}}_b, \hat{\hat{\theta}})}{\mathcal{L}(\hat{\mu}_s, \hat{\mu}_b, \hat{\theta})} \leftarrow \begin{array}{l} \max. L \text{ with specified} \\ \text{signal parameter } \mu_s \\ \leftarrow \text{nuisance parameters} \\ \text{that maximise } L \end{array}$$

Excess found

 3.3σ Poissonian fluctuation over null

Excess found

reference region 1-7 keV 285 events observed vs. 232 events expected (from best-fit)

 3.3σ Poissonian fluctuation over null

Featured in Physics Op

Excess electronic recoil events in XENON1T

E. Aprile *et al.* (XENON Collaboration) Phys. Rev. D **102**, 072004 – Published 12 October 2020

Physics See Viewpoint: Dark Matter Detector Delivers Enigmatic Signal

Theorists React to Potential Signal in Dark Matter Detector

October 12, 2020 • *Physics* 13, s132

A tantalizing signal reported by the XENON1T dark matter experiment has sparked theorists to investigate explanations involving new physics.

Excess found

 3.3σ Poissonian fluctuation over null

Excess electronic recoil events in XENON1T

E. Aprile *et al.* (XENON Collaboration) Phys. Rev. D **102**, 072004 – Published 12 October 2020

Physics See Viewpoint: Dark Matter Detector Delivers Enigmatic Signal

Theorists React to Potential Signal in Dark Matter Detector

October 12, 2020 • *Physics* 13, s132

A tantalizing signal reported by the XENON1T dark matter experiment has sparked theorists to investigate explanations involving new physics.

Solar axion results

background-only at 3.4σ

$$\begin{cases} g_{ae} < 3.7 \times 10^{-12} \\ g_{ae} g_{an}^{eff} < 4.6 \times 10^{-18} \\ g_{ae} g_{a\gamma} < 7.6 \times 10^{-22} \text{ GeV}^{-1} \end{cases}$$

Couplings not independent from g_{ae} ; can be factored out. Relative rates unconstrained (model-independent)

> Strong tension with astrophysical constraints from stellar cooling (arXiv:2003.01100)

ABC

Neutrino magnetic moment

. . .

. . .

. . .

. .

Neutrino magnetic moment favored over background-only at 3.2σ

Neutrino magnetic moment

. . .

. . .

Neutrino magnetic moment favored over background-only at 3.2σ $\begin{pmatrix} \mu_{\nu} \in (1.4, \ 2.9) \times 10^{-11} \ \mu_{B} \\ (90\% \, \text{C.L.}) \end{pmatrix}$

Compatible with other experiments. In tension with astrophysical constraints.

Bosonic dark matter

90% CL upper limits and sensitivities M.Galloway | Krakow Jagiellonian Seminar 2021

Bosonic dark matter

90% CL upper limits and sensitivities M.Galloway | Krakow Jagiellonian Seminar 2021

Bosonic dark matter

Fitting a mono-energetic peak to the excess: 2.3 +/- 0.2 keV

90% CL upper limits and sensitivities M.Galloway | Krakow Jagiellonian Seminar 2021

Investigation of the Excess

Energy reconstruction and resolution

Calibration with ³⁷Ar after the science run: decays via electron capture with 2.8 keV deposition.

³⁷Ar 2.8 keV reconstructed peak

Mean energy

Observed: 2.827 keV

Model: 2.834 keV

Energy Resolution

³⁷Ar Resolution

Observed: 18.12%

Model: 18.88%

Validates energy reconstruction and resolution down to 2.8 keV.

Threshold

All signal and background models are first convolved with efficiency and resolution.

- 1 keV threshold at 10% efficiency
- excess peaks in the 2 3 keV region (80% efficiency)

Fit to ²²⁰Rn (²¹²Pb) calibration data using same analysis framework

²²⁰Rn calibration reconstructs as expected: Validates efficiency and energy reconstruction down to threshold.

Event spatio-temporal uniformity

Expectation: a signal would be distributed uniformly in space and time.

Events are uniformly distributed within fiducial volume (1042 kg in center of TPC).

Event spatio-temporal uniformity

Expectation: a signal would be distributed uniformly in space and time.

Events are uniformly distributed within fiducial volume (1042 kg in center of TPC).

Consistent with constant time, but with very low statistics! (dedicated annual modulation

analysis in progress)

Fluctuations and correlations

An unbinned profile likelihood analysis was used for this analysis.

15

3.0*σ*

 1σ

2σ

20

 1.7σ •

Зσ

25

30

Fluctuations and correlations

An unbinned profile likelihood analysis was used for this analysis.

15

3.0*σ*

 1σ

2σ

20

 1.7σ •

Зσ

25

30

New background: tritium

New background: tritium

Further checks

Time dependence revisited for signals (constant in time), tritium decay, and annual modulation.

All p-values are similar.

S2-only allows for a lower energy threshold O(100 eV)

$$\mu_{\nu} < 3.1 \times 10^{-11} \ \mu_B$$

 $g_{ae} < 4.8 \times 10^{-12}$
 $R_{\rm H3} < 2256 \ {\rm events/t/y}$

Both checks consistent with all hypotheses.

Our results are... inconclusive.

(what's next?)

PMT array (494 PMTs in total, in 2 arrays)

TPC (5.9 t LXe, 4 t fiducial) M.Galloway | Krakow Jagiellonian Seminar 2021

Neutron veto (120 PMTs, Gd-doped water)

XENONnT is currently taking science data!

Liquid xenon purification system

PMT array (494 PMTs in total, in 2 arrays)

TPC (5.9 t LXe, 4 t fiducial) M.Galloway | Krakow Jagiellonian Seminar 2021

Neutron veto (120 PMTs, Gd-doped water)

XENONnT is currently taking science data!

PMT array (494 PMTs in total, in 2 arrays)

TPC (5.9 t LXe, 4 t fiducial) M.Galloway | Krakow Jagiellonian Seminar 2021

Neutron veto (120 PMTs, Gd-doped water)

Liquid xenon purification system

Rn distillation column reduce ²²²Rn (²¹⁴Pb)

XENONnT is currently taking science data!

PMT array during assembly

Waveform during current operation

XENONnT: Detector performance

PMTs

- 485 PMTs used in data analysis
- Average quantum efficiency 34 %

^{83m}Kr calibration

- Resolved peaks in S1-S2 space resolved
- Photon detection efficiency ~ 0.17 PE/photon (XENON1T 0.14 PE/photon)
- Energy resolution at $41.5 \text{ keV} \sim 7.6 \% (\text{XENON1T 8 \%})$
- S2 resolution of 15.1 % (XENON1T 13.7 %)

XENONnT: purification

Ionization electrons - survival probability

- High purification flux for removing electronegative impurities: $21/\text{min LXe} \approx 350 \text{ kg/h}$
- Low-Rn filters for science data taking
- Achieved electron-lifetime of > 20 ms

XENON1T: 0.65 ms ≈ 0.9 x maximum drift-time (30 % cathode survival)

XENONnT: 2.2 ms maximum drift (> 90 % cathode survival)

XENONnT: Radon distillation

Constant removal of emanating radon from xenon using difference in vapor pressure

- Reached equilibrium concentration of 1.72 µBq/ kg by gas extraction only
- Background goal 1 μ Bq/kg
- Additional factor 2 in Rn removal possible via liquid extraction

XENONnT: neutron veto

- Gadolinium-doped water Cherenkov detector with
 0.5 % Gd₂(SO₄)₃
- Optically separate inner region of existing muon veto
- 120 PMTs
- Projected 87 % neutron tagging efficiency

XENONnT: background projections

- Total ER rate reduced by factor six
- ER background for WIMP and axion search dominated by 222 Rn ($2\nu\beta\beta$ of 136 Xe above 30 keV)
- Neutrino-dominated NR: target < 1 neutron NR event per 20 t-yr target exposure

XENONnT: background projections

JCAP 11 (2020) 031

- Improve existing WIMP limits by more than one order of magnitude with 20 tonne-year exposure
- Reach neutrino fog (and detect ⁸B neutrinos from the sun)
- Discovery potential beyond 10^{-47} cm² for 50 GeV/c² WIMP in ~ one year live time

XENONnT: excess

Summary

- XENON1T still holds the best limit for SI WIMPs (although may change soon)
- Lower dark matter masses and other physics can be probed with new analysis techniques to lower the threshold
- An excess at low energies is best fit with solar axions, but in tension with astrophysical constraints
- XENONnT is currently taking science data with 1/6 of the 1T background and 20 times more exposure.

www.xenonexperiment.org

instagram.com/xenon_experiment

XENON

twitter.com/xenonexperiment

Coherent neutrino-nucleus scattering

Light yield: Ly

Neutrino flux: ϕ

- Combination of XENON1T, LLNL charge yield and LUX light yield enables to set **upper limit on neutrino flux** $\Phi < 1.4 \cdot 10^7 \text{ cm}^{-2} \text{s}^{-1}$ (90 % C.L.)
- Measured neutrino flux from SNO enables to set upper limit on the light yield

Coherent neutrino-nucleus scattering

- neutrino interactions with up, down quarks
- SM interaction is at 0.0, 0.00

Phys. Rev. Lett. 126 (2021) 091301

M.Galloway | Krakow Jagiellonian Seminar 2021

Axion statistical inference

a

3D confidence volume (90% C.L.)

Axions via Inverse Primakoff effect

C. Gao, et al. arXiv:2006.14598

Coherent interaction of axion with field of atom via axion-photon coupling. Minimising the tension with stellar constraints.

Statistical Method

Unbinned profile likelihood analysis

Statistical Method

Unbinned profile likelihood analysis

• Combine likelihoods of the 2 partitions

$$\mathcal{L} = \mathcal{L}_{\mathrm{a}} imes \mathcal{L}_{\mathrm{b}}$$

Statistical Method

Unbinned profile likelihood analysis

• Test statistic q for inference

Event quality and backgrounds

Event classification and waveform inspection: all ok.

Instrumental backgrounds

No accidental coincidences (AC) or surface backgrounds reconstructed in ROI falls within ER band (physical events)

Event quality and backgrounds

Event classification and waveform inspection: all ok.

Instrumental backgrounds

No accidental coincidences (AC) or surface backgrounds reconstructed in ROI falls within ER band (physical events)

Valid events

 $E = (N_{ph} + N_e) \cdot W$

with W = 13.7 eV/quanta for xenon

 g_1 and g_2 : detector-specific gain constants; extract g_1/g_2 from calibration data

 $E = (N_{ph} + N_e) \cdot W$

with W = 13.7 eV/quanta for xenon

 g_1 and g_2 : detector-specific gain constants; extract g_1/g_2 from calibration data

 $E = (N_{ph} + N_e) \cdot W$

with W = 13.7 eV/quanta for xenon

 g_1 and g_2 : detector-specific gain constants; extract g_1/g_2 from calibration data

$$\frac{S2}{E}=-\frac{g_2}{g_1}\frac{S1}{E}+\frac{g_2}{W}$$

 $E = (N_{ph} + N_e) \cdot W$

with W = 13.7 eV/quanta for xenon

g₁ and **g**₂: detector-specific gain constants; extract g₁/g₂ from calibration data

$$\frac{S2}{E}=-\frac{g_2}{g_1}\frac{S1}{E}+\frac{g_2}{W}$$

g₁ and g₂ are used to reconstruct energy of each event

$$E = \left(\frac{S1}{g1} + \frac{S2}{g2}\right) \cdot W$$

²¹⁴Pb *β*-decay spectral model

²¹⁴**Pb dominant background component**

From purification and handling, this component seems unlikely.

Tritium is naturally abundant in water (HTO) and hydrogen (HT) - emanation from materials 3 H:H in H₂O is **5 - 10 x 10⁻¹⁸ mol/mol** *

*Hydrology measurements from IAEA nuclear database

Tritium is naturally abundant in water (HTO) and hydrogen (HT) - emanation from materials 3 H:H in H₂O is **5 - 10 x 10⁻¹⁸ mol/mol** *

Best-fit tritium (~ 6 x 10^{-25} mol/mol) requires > 30 ppb of (H₂O + H₂) impurities

Tritium is naturally abundant in water (HTO) and hydrogen (HT) - emanation from materials 3 H:H in H₂O is **5 - 10 x 10⁻¹⁸ mol/mol** *

Best-fit tritium (~ 6 x 10⁻²⁵ mol/mol) requires > 30 ppb of ($H_2O + H_2$) impurities

Tritium is naturally abundant in water (HTO) and hydrogen (HT) - emanation from materials 3 H:H in H₂O is **5 - 10 x 10⁻¹⁸ mol/mol** *

Best-fit tritium (~ 6 x 10⁻²⁵ mol/mol) requires > 30 ppb of (H₂O + H₂) impurities

Our light yield implies O(1) ppb H₂O

HT

- No direct measure of H₂ abundance or impurity concentration
- For O₂-equivalent impurities, electron lifetime indicates O(0.1) ppb
- x 100 higher H₂ concentration than O₂eq. molecules - possible?

*Hydrology measurements from IAEA nuclear database

Tritium is naturally abundant in water (HTO) and hydrogen (HT) - emanation from materials 3 H:H in H₂O is **5 - 10 x 10⁻¹⁸ mol/mol** *

Best-fit tritium (~ 6 x 10⁻²⁵ mol/mol) requires > 30 ppb of (H₂O + H₂) impurities

Our light yield implies O(1) ppb H₂O

HT

- No direct measure of H₂ abundance or impurity concentration
- For O₂-equivalent impurities, electron lifetime indicates O(0.1) ppb
- x 100 higher H₂ concentration than O₂eq. molecules - possible?

HTO, HT emanation unlikely based on LXe purity.

*Hydrology measurements from IAEA nuclear database

XENONnT

XENONnT measured ER spectrum