The CMB bispectrum from bouncing cosmologies JCAP11(2021)024, PCMD, Ruth Durrer, Nelson Pinto-Neto

## Paola C. M. Delgado



Uniwersytet Jagielloński Faculty of Physics, Astronomy and Applied Computer Science

UJ Particle Physics Phenomenology and Experiments Seminar, November 22, 2021

# Outline

### Introduction

CMB quantities and non-gaussianity CMB anomalies at large scales A proposal to solve the anomalies

### The bispectrum in the bounce+inflation model

Numerical calculations Cosmic variance Signal-to-noise ratio Overlap with standard bispectrum shapes

## Conclusions

# CMB quantities and non-gaussianity

- A very hot Universe, where protons and electrons are free; photons have a short mean free path due to Thomson scattering.
- Temperature decreases ( $\sim$  3000K): recombination; photons reach us.
- ► The last-scattering surface: radiates as a black body; microwaves nowadays; coming from every direction; ⇒ CMB.



Figure 1: Figure from the COBE satellite (https://lambda.gsfc.nasa.gov/product/cobe/). $_{\odot \circ \odot \circ}$ 



Figure 2: Figure from Planck 2018.

The CMB temperature power spectrum: Sachs-Wolfe plateau at large scales (modes outside the horizon at recombination); peaks caused by acoustic oscillations for scales inside the horizon; Silk damping for smallest scales (recombination is not instantaneous and free path of photons is not zero).



Figure 3: Figure from Planck 2018 (arXiv:1807.06205 [astro-ph.CO]).

Temperature fluctuations:

$$\frac{\Delta T(\theta,\varphi)}{T_0} \equiv \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m}^T Y_{\ell m}(\theta,\phi).$$
(1)

 $\ell = 1$  is highly contaminated by the kinetic dipole.

CMB TT power spectrum:

$$\left\langle \boldsymbol{a}_{\ell m}^{\mathsf{T}} \boldsymbol{a}_{\ell' m'}^{\mathsf{T}} \right\rangle = \boldsymbol{C}_{\ell}^{\mathsf{TT}} \delta_{\ell \ell'} \delta_{m m'}. \tag{2}$$

Observationally, we only have one sky. So we average over m:

$$\hat{C}_{\ell} = rac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2.$$
 (3)

When  $\ell$  is small, we have cosmic variance.

Gravity is non-linear. What about the 3-point correlation functions?

$$\langle X(\mathbf{k_1})X(\mathbf{k_2})X(\mathbf{k_3}) \rangle = (2\pi)^3 \delta(\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3})B_X(k_1, k_2, k_3),$$
 (4)

where  $B_X$  is the bispectrum.

B is usually classified according to the triangle's shape for which it is maximal.



Local non-Gaussianity:

$$\Psi(\mathbf{x}) = \Psi_{G}(\mathbf{x}) + f_{\mathrm{nl}}\left(\Psi_{G}^{2}(\mathbf{x}) - \left\langle \Psi_{G}^{2} \right\rangle\right), \qquad (5)$$

where the Bardeen potential has a vanishing mean.

Great reviews: Bartjan van Tent (arXiv:2017.10802v1 [astro-ph.CO]); Ruth Durrer, The Cosmic Microwave Background.

# CMB anomalies at large scales & the lensing amplitude

- Large scale features that deviate from the ΛCDM predictions. p-values smaller than 1% to each anomaly.
- Power suppression: lack of 2-point correlations C(θ) for θ > 60° (COBE, WMAP, Planck). The estimator of the total amount of correlations in θ > 60°, given by

$$S_{1/2} \equiv \int_{-1}^{1/2} [C(\theta)]^2 d(\cos \theta),$$
 (6)

results in  $S_{1/2} \approx 1500 \mu K^4$ . For  $\Lambda CDM$ :  $45000 \mu K^4$ .



 Figure 4: Figure from Craig J. Copi, Dragan Huterer, Dominik J. Schwarz, Glenn D. Starkman (arXiv:1310.3831 [astro-ph.CO]).

 (arXiv:1310.3831 [astro-ph.CO]).

 Parity asymmetry: WMAP and Planck found an odd-parity preference. The estimator is given by

$$R^{TT}(\ell_{\max}) = \frac{D_+(\ell_{\max})}{D_-(\ell_{\max})},\tag{7}$$

where  $D_{+,-}(\ell_{\max})$  measures the power spectrum in even or odd multipoles, respectively, up to  $\ell_{\max}$ .  $\Lambda CDM$  predicts neutrality.



Figure 5: Figure from Planck 2015 (arXiv:1506.07135 [astro-ph.CO]).

Dipolar asymmetry: can be seen in WMAP and Planck, only for large scales. Mathematically, this means a non-vanishing BipoSH coefficient A<sup>1M</sup><sub>ℓ,ℓ+1</sub>. In terms of

$$A_{1}(\ell) \equiv \frac{3}{2} \sqrt{\frac{1}{3\pi} \sum_{M} |A_{\ell,\ell+1}^{1M} \mathscr{G}_{\ell}^{-1}|^{2}}, \qquad (8)$$

Planck finds  $A_1 = 0.068 \pm 0.023$ .

- ► The lensing amplitude  $A_L$ : introduced as a free parameter to provide a consistency test.  $A_L = 1$  corresponds to the standard lensing in the Universe. The best-fit from Planck for  $\Lambda CDM$  is more than  $2\sigma$  away from 1.
- Details on the anomalies can be found in I. Agullo, D. Kranas and V. Sreenath (arXiv:2006.09605v1 [astro-ph.CO]) and references therein.

# A proposal to solve the anomalies

Bounce preceding inflation, I. Agullo, D. Kranas, V. Sreenath (arXiv: 2005.01796 [astro-ph.CO]). Scale factor around the bounce:

$$a(t) = a_b (1 + bt^2)^n,$$
 (9)

where  $R_b = 12nb$ .

- For n = 1/6 (LQC), the kinetic term is the largest just after the bounce. For larger n the potential is already relevant at the bounce.
- Initial quantum state is the adiabatic vacuum in the far past. At the onset of inflation, it deviates from Bunch-Davies.
- Non-Gaussianities arise, correlating super-horizon modes and infrared scales.



Figure 6: PCMD, R. Durrer, N. Pinto-Neto

Non-Gaussianity increases the probability that some features appear in individual realizations of the primordial probability distribution.



Figure 7: Figures from I. Agullo, D. Kranas, V. Sreenath (arXiv: 2005.01796 [astro-ph.CO])

## LQC and phenomenological model (best-fit):

| n    | $\gamma$ | q     | $f_{\rm nl}$ for $R_B = 1 \ l_{Pl}^{-2}$ | $f_{\rm nl}$ for $R_B = 10^{-3} l_{Pl}^{-2}$ |
|------|----------|-------|------------------------------------------|----------------------------------------------|
| 1/6  | 0.6468   | -0.7  | 3326                                     | 8518                                         |
| 0.21 | 0.751    | -1.24 | 959                                      | 4372                                         |

Power spectrum and bispectrum:

$$\mathcal{P}_{\mathscr{R}}(k) = A_{s} \begin{cases} (k/k_{i})^{2}(k_{i}/k_{b})^{q} & \text{if } k \leq k_{i} \\ (k/k_{b})^{q} & \text{if } k_{i} < k \leq k_{b} \\ (k/k_{b})^{n_{s-1}} & \text{if } k > k_{b} . \end{cases}$$
(10)  
$$B(k_{1}, k_{2}, k_{3}) = \frac{3}{5} (2\pi^{2})^{2} f_{nl} \left[ \frac{\mathcal{P}_{\mathscr{R}}(k_{1})}{k_{1}^{3}} \frac{\mathcal{P}_{\mathscr{R}}(k_{2})}{k_{2}^{2}} + \frac{\mathcal{P}_{\mathscr{R}}(k_{1})}{k_{1}^{3}} \frac{\mathcal{P}_{\mathscr{R}}(k_{3})}{k_{3}^{3}} + \frac{\mathcal{P}_{\mathscr{R}}(k_{3})}{k_{3}^{3}} \frac{\mathcal{P}_{\mathscr{R}}(k_{2})}{k_{2}^{3}} \right] \times \\ \exp \left( -\gamma \frac{k_{1} + k_{2} + k_{3}}{k_{b}} \right) .$$
(11)

# The bispectrum in the bounce+inflation model

Recalling the definition of the bispectrum:

$$\frac{\Delta T}{T}(\mathbf{n}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\mathbf{n}), \qquad (12)$$

$$\langle \mathsf{a}_{\ell_1 m_1} \mathsf{a}_{\ell_2 m_2} \mathsf{a}_{\ell_2 m_3} \rangle = \mathscr{G}_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} \mathsf{b}_{\ell_1 \ell_2 \ell_3} = \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \mathsf{B}_{\ell_1 \ell_2 \ell_3}$$

$$(13)$$

$$\mathcal{G}_{m_1m_2m_3}^{\ell_1\ell_2\ell_3} = \sqrt{\frac{\prod_{j=1}^3(2\ell_j+1)}{4\pi}} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = g_{\ell_1\ell_2\ell_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix}$$
(14)

▶  $b_{\ell_1\ell_2\ell_3}$  is the reduced bispectrum. It vanishes if the triangle inequality,  $|\ell_1 - \ell_2| \le \ell_3 \le \ell_1 + \ell_2$ , is not satisfied or if the sum  $\ell_1 + \ell_2 + \ell_3$  is odd.

Within linear perturbation theory,

$$b_{\ell_{1}\ell_{2}\ell_{3}} = \left(\frac{2}{\pi}\right)^{3} \int_{0}^{\infty} dx \, x^{2} \int_{0}^{\infty} dk_{1} \int_{0}^{\infty} dk_{2} \int_{0}^{\infty} dk_{3} \times \left[\prod_{j=1}^{3} \mathscr{T}(k_{j},\ell_{j}) j_{\ell_{j}}(k_{j}x)\right] (k_{1}k_{2}k_{3})^{2} B(k_{1},k_{2},k_{3}), \quad (15)$$

where, at large scales,

$$\mathscr{T}(k,\ell) \simeq \frac{1}{5} j_{\ell}(k(t_0 - t_{\rm dec})).$$
(16)

## ▶ The bispectrum is separable in k-space:

$$(k_1k_2k_3)^2 B(k_1, k_2, k_3) = B_0 [f(k_1)f(k_2)g(k_3) + f(k_1)f(k_3)g(k_2) + f(k_3)f(k_2)g(k_1)]$$
(17)

$$B_0 = \frac{3}{5} (2\pi^2)^2 f_{\rm nl} \tag{18}$$

$$f(k) = \frac{\mathscr{P}_{\mathscr{R}}(k)}{k} \exp(-\gamma k/k_b)$$
(19)

$$g(k) = k^2 \exp(-\gamma k/k_b)$$
<sup>(20)</sup>

$$X_{\ell}(x,k) = \mathscr{T}(k,\ell)j_{\ell}(kx)f(k), \qquad (21)$$

$$Z_{\ell}(x,k) = \mathscr{T}(k,\ell)j_{\ell}(kx)g(k), \qquad (22)$$

$$X_{\ell}(x) = \int_0^\infty dk X_{\ell}(x,k), \qquad (23)$$

$$Z_{\ell}(x) = \int_0^\infty dk Z_{\ell}(x,k), \qquad (24)$$

$$b_{\ell_1\ell_2\ell_3} = \left(\frac{2}{\pi}\right)^3 B_0 \int_0^\infty dx \, x^2 \left[ X_{\ell_1}(x) X_{\ell_2}(x) Z_{\ell_3}(x) + X_{\ell_1}(x) X_{\ell_3}(x) Z_{\ell_2}(x) + X_{\ell_3}(x) X_{\ell_2}(x) Z_{\ell_1}(x) \right].$$
(25)

<ロト < 回 > < 目 > < 目 > < 目 > 目 の Q () 16 / 24

# Numerical calculations

• The integrals over k,  $X_{\ell}(x)$  and  $Z_{\ell}(x)$  peak at  $x = t_0 - t_{dec}$ .



Figure 8: PCMD, R. Durrer, N. Pinto-Neto.

Numerical results for the reduced bispectrum:



Figure 9: PCMD, R. Durrer, N. Pinto-Neto.

#### ► The local bispectrum:

$$b_{\ell_1\ell_2\ell_3}^{(\text{local})} = \frac{3f_{n1}(2\pi^2 A_s)^2}{4 \times 5^4} \left( \frac{1}{\ell_1(\ell_1+1)\ell_2(\ell_2+1)} + \frac{1}{\ell_1(\ell_1+1)\ell_3(\ell_3+1)} + \frac{1}{\ell_2(\ell_2+1)\ell_3(\ell_3+1)} \right), \quad (26)$$

Comparison between the bispectrum of the present model and the local bispectrum: (ℓ<sub>1</sub> = 4, ℓ<sub>2</sub> = ℓ<sub>3</sub> = ℓ, f<sub>nl</sub>(*local*) = 5.0):



Figure 10: PCMD, R. Durrer, N. Pinto-Neto.

# Cosmic variance

Estimator for the bispectrum:

$$\hat{B}_{\ell_1 \ell_2 \ell_3} = \sum_{m_1 m_2 m_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_2 m_3} .$$
<sup>(27)</sup>

Its variance reads

$$\operatorname{var}(B_{\ell_{1}\ell_{2}\ell_{3}}) = \langle \hat{B}_{\ell_{1}\ell_{2}\ell_{3}}^{2} \rangle \simeq C_{\ell_{1}}C_{\ell_{2}}C_{\ell_{3}}\left(1 + \delta_{\ell_{1}\ell_{2}} + \delta_{\ell_{1}\ell_{3}} + \delta_{\ell_{3}\ell_{2}} + 2\delta_{\ell_{1}\ell_{2}}\delta_{\ell_{2}\ell_{3}}\right) .$$
(28)

## For the reduced bispectrum this yields

$$\operatorname{var}\left(b_{\ell_{1}\ell_{2}\ell_{3}}\right) \simeq g_{\ell_{1}\ell_{2}\ell_{3}}^{-2} C_{\ell_{1}}C_{\ell_{2}}C_{\ell_{3}}\left(1 + \delta_{\ell_{1}\ell_{2}} + \delta_{\ell_{1}\ell_{3}} + \delta_{\ell_{3}\ell_{2}} + 2\delta_{\ell_{1}\ell_{2}}\delta_{\ell_{2}\ell_{3}}\right) \,. \tag{29}$$



Figure 11: PCMD, R. Durrer, N. Pinto-Neto.

# Signal-to-noise ratio

The SNR is given by

$$\left(\frac{S}{N}\right)^{2}(\ell_{\max}) = \sum_{\ell_{1}\ell_{2}\ell_{3}=2}^{\ell_{\max}} \frac{b_{\ell_{1}\ell_{2}\ell_{3}}^{2}}{\operatorname{var}\left(b_{\ell_{1}\ell_{2}\ell_{3}}\right)}.$$
(30)

For this computation we use the fits to the reduced bispectrum:



Figure 12: PCMD, R. Durrer, N. Pinto-Neto.

## The SNR, considering a 70% of sky coverage, is



Figure 13: PCMD, R. Durrer, N. Pinto-Neto.

In all cases of interest, the bispectrum should be detectable in the Planck data.

# Overlap with standard bispectrum shapes

The overlap can be obtained via a scalar product

$$\langle S_1, S_2 \rangle = \int_V S_1(k_1, k_2, k_3) S_2(k_1, k_2, k_3) w(k_1, k_2, k_3) dk_1 dk_2 dk_3, \tag{31}$$

the weight function w(k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub>) is an arbitrary non-negative function.
The projection of the bounce bispectrum in the standard shapes' bispectra is very small:

$$\begin{array}{ll} \cos\theta^{(\rm bounce, local)} = 2.369 \times 10^{-4}, & \cos\theta^{(\rm bounce, local)} = 7.117 \times 10^{-5}, \\ \cos\theta^{(\rm bounce, equi)} = 2.364 \times 10^{-4}, & \cos\theta^{(\rm bounce, equi)} = 7.071 \times 10^{-5}, \\ \cos\theta^{(\rm bounce, ortho)} = -3.985 \times 10^{-5} & \cos\theta^{(\rm bounce, ortho)} = -1.206 \times 10^{-5} \\ \text{for } n = 1/6 & \text{for } n = 0.21 \end{array}$$

# Conclusions

- In all cases with sufficient non-Gaussianity to mitigate the large scale anomalies of CMB data, the bispectrum should be detectable in the Planck data.
- ► The largest contributions to the SNR come from triples (ℓ<sub>1</sub>, ℓ<sub>2</sub>, ℓ<sub>3</sub>) where at least one multipole is smaller than 4, for which the signal is larger than or comparable to the square root of the variance.
- Adding polarisation data may enhance the SNR by about a factor of two.
- These findings motivate us to perform a search for this bispectrum in the actual Planck data.