The CMB bispectrum from bouncing cosmologies
JCAP11(2021)024, PCMD, Ruth Durrer, Nelson Pinto-Neto

Paola C. M. Delgado

Uniwersytet Jagiellonski
Faculty of Physics, Astronomy and Applied Computer Science

UJ Particle Physics Phenomenology and Experiments Seminar, November 22, 2021

1/24



Outline

Introduction
CMB quantities and non-gaussianity
CMB anomalies at large scales
A proposal to solve the anomalies

The bispectrum in the bounce-+inflation model
Numerical calculations
Cosmic variance
Signal-to-noise ratio
Overlap with standard bispectrum shapes

Conclusions

2/24



CMB quantities and non-gaussianity

» A very hot Universe, where protons and electrons are free; photons
have a short mean free path due to Thomson scattering.

» Temperature decreases (~ 3000K): recombination; photons reach us.

» The last-scattering surface: radiates as a black body; microwaves
nowadays; coming from every direction; = CMB.

Figure 1: Figure from the COBE satellite (https://lambda.gsfc.nasa.gov/product/cobe/).
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Figure 2: Figure from Planck 2018.
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» The CMB temperature power spectrum: Sachs-Wolfe plateau at large
scales (modes outside the horizon at recombination); peaks caused by

acoustic
smallest
photons
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oscillations for scales inside the horizon; Silk damping for
scales (recombination is not instantaneous and free path of
is not zero).
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Figure 3: Figure from Planck 2018 (arXiv:1807.06205 [astro-ph.CO]).
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» Temperature fluctuations:

00 J4
AT;?@ =53 ol Yim(0, 0). (1)

(=2 m=—/

¢ =1 is highly contaminated by the kinetic dipole.
» CMB TT power spectrum:

<ag—mal7/—m’> = CZTT5€€’5mm’- (2)
» Observationally, we only have one sky. So we average over m:
. 1 <
Co = 2w+l Z |3£m\2~ (3)
m=—¢
When ¢ is small, we have cosmic variance.
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Gravity is non-linear. What about the 3-point correlation functions?
(X(k1)X(k2)X (k3)) = (27)*8(k1 + k2 + k3)Bx (k1, k2, k3),  (4)

where Bx is the bispectrum.

B is usually classified according to the triangle’s shape for which it is
maximal.

[;.

Squeezed shape Equilateral shape

Local non-Gaussianity:

W(x) = Vg(x) + fu (VE(x) — (V%)) , (5)

where the Bardeen potential has a vanishing mean.
Great reviews: Bartjan van Tent (arXiv:2017.10802v1 [astro-ph.CO]); Ruth Durrer,

The Cosmic Microwave Background.
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CMB anomalies at large scales & the lensing amplitude
» Large scale features that deviate from the ACDM predictions.

p-values smaller than 1% to each anomaly.

» Power suppression: lack of 2-point correlations C(6) for 6 > 60°
(COBE, WMAP, Planck). The estimator of the total amount of

correlations in 6 > 60°, given by

1/2
Si2= [ [COPd(coso).

results in 51/ ~ 1500.K*. For ACDM: 45000uK*.
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Figure 4: Figure from Craig J. Copi, Dragan Huterer, Dominik J. Schwarz, Glenn D. Starkman

(arXiv:1310.3831 [astro-ph.CO]).
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» Parity asymmetry: WMAP and Planck found an odd-parity preference.
The estimator is given by

Dy (fmax)

RTT(EmaX) = W7
—\fmax

(7)

where Dy _(4;nax) measures the power spectrum in even or odd
multipoles, respectively, up to £y.x. ACDM predicts neutrality.

Figure 5: Figure from Planck 2015 (arXiv:1506.07135 [astro-ph.CO]).
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» Dipolar asymmetry: can be seen in WMAP and Planck, only for large
scales. Mathematically, this means a non-vanishing BipoSH coefficient
A}’X’H. In terms of

3 /1 _
A(l) = 2\/37T > IAL G, (8)
Y

Planck finds A; = 0.068 + 0.023.

» The lensing amplitude A;: introduced as a free parameter to provide a
consistency test. A; = 1 corresponds to the standard lensing in the
Universe. The best-fit from Planck for ACDM is more than 2o away
from 1.

» Details on the anomalies can be found in |. Agullo, D. Kranas and V. Sreenath
(arXiv:2006.09605v1 [astro-ph.CO]) and references therein.
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A proposal to solve the anomalies

» Bounce preceding inflation, 1. Agullo, D. Kranas, V. Sreenath (arXiv:
2005.01796 [astro-ph.CO]). Scale factor around the bounce:

a(t) = ap(1 + bt?)", (9)
where R, = 12nb.
» For n=1/6 (LQC), the kinetic term is the largest just after the
bounce. For larger n the potential is already relevant at the bounce.
» Initial quantum state is the adiabatic vacuum in the far past. At the
onset of inflation, it deviates from Bunch-Davies.

» Non-Gaussianities arise, correlating super-horizon modes and infrared
scales.

Figure 6: PCMD, R. Durrer, N. Pinto-Neto
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» Non-Gaussianity increases the probability that some features appear in
individual realizations of the primordial probability distribution.

1000,

Figure 7: Figures from |. Agullo, D. Kranas, V. Sreenath (arXiv: 2005.01796
[astro-ph.CO])
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» LQC and phenomenological model (best-fit):

n ~ g | fulor Rp=115" | fufor Rp =107 15}
1/6 | 0.6468 | —0.7 3326 8518
0.21 | 0.751 | —1.24 959 4372

» Power spectrum and bispectrum:

(k/ ki) (ki / k) if k <k
Pg(k) = As (k/kp)? if ki <k <k (10)
(k/kp)™s 1 if k> kp
3 Pag(k) Pgke)  Palk) Pgk)  Palk) Pzk)
B(ki ko ka) = =(27°)fu [ = > : 3 = .
5 K3 K3 K3 K3 K3 K3
ki + ko + k
exp <—'y¥> . (11)
kp
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The bispectrum in the bounce-+inflation model
» Recalling the definition of the bispectrum:

Ai_,-T(n) = Z am Yém(n) ) (12)
Im

_ libals (b b L
<3£1m1362m23€2m3> = gmllmzmgbflnga = < m my ms B515253

(13)
with

3 :
@litals _ LG5+ 6 6 L L b3 o b A3
mymym3 ~ . 0 0 o0 = 8ytr03

my m2 m3 my m2 m3
(14)
» by, 0,05 is the reduced bispectrum. It vanishes if the triangle inequality,

|01 — €a] < 03 < {1+ o, is not satisfied or if the sum ¢1 + ¢o + (3 is
odd.
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» Within linear perturbation theory,

2 3 oo (o) [o.¢] (o)
beeye, = (77) /dxxz/ dk1/ dkg/ dks x
0 0 0 0
3

11 7 (kis :)ie; (kix) | (kikoks)*B(ka, ko, k3), (15)
j=1

where, at large scales,

,7(/(,6) = éj@(k(to - tdec)) . (16)
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» The bispectrum is separable in k-space:

(kikoks)?Blki, ko, ks) = Bo [F(ki)f(ka)g(ks) + F(ki)f(k3)g(ka) + F(k3)f(ka)g(ki)] (17)
B = CrYh (18)
= 72 eoausn) (19)
g(k) = K exp(—vk/kp) (20)
Xl k) = Tk g (F(K), (21)
Zi k) = Tk Ok, 22)
Xeb) = [T dexelx k), (23)
0
Z(x) = /oodeg(x,k), (24)
0
3 oo
bty = (2) Bo [ 00 [Xey (0Xe (0223 06) + Xey (Xeg ()22, () +
Xy ()X ey ()2, ()] - (25)
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Numerical calculations

> The integrals over k, Xy(x) and Zy(x) peak at x = tp — tgec-
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Figure 8: PCMD, R.

Durrer, N. Pinto-Neto.
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» Numerical results for the reduced bispectrum:

Figure 9: PCMD, R. Durrer, N. Pinto-Neto.
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» The local bispectrum:

3f,1 (272 As)? 1 1 1
b;lozal% _ 3fu(277As) " N . (e
16243 4 x 54 £1(€1 + 1)La(€2 + 1) £1(€1 + 1)€3(€3 + 1) Lo(l + 1)£3(€3 + 1)

» Comparison between the bispectrum of the present model and the
local bispectrum: ({1 = 4, l, = 3 =, fy(local) = 5.0):
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Figure 10: PCMD, R. Durrer, N. Pinto-Neto.
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Cosmic variance
» Estimator for the bispectrum:

B _ L by 43
Boityes = > <m1 my  my ) Aam2mdms -

mymzm3

» Its variance reads

A2
var(Bey oye5) = (BY ay05) = Coy Cop Coy (1 8uy0y + Sey0 + Stz + 28010560505 -

» For the reduced bispectrum this yields

~ 2
var (beyeye;) = €0, 5,05 Cey Cey Cos (1 8oy, + Sey05 + Seze + 28010500505 -

Figure 11: PCMD, R. Durrer, N. Pinto-Neto.
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(28)

(29)
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Signal-to-noise ratio
» The SNR is given by

S 2 Emax bl% 00
2 (lman) = bl 30
< N) ( ) Z var (b£1£2€3) (30)

l1lpl3=2

» For this computation we use the fits to the reduced bispectrum:
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Figure 12: PCMD, R. Durrer, N. Pinto-Neto.
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» The SNR, considering a 70% of sky coverage, is
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Figure 13: PCMD, R. Durrer, N. Pinto-Neto.

» In all cases of interest, the bispectrum should be detectable in the
Planck data.
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Overlap with standard bispectrum shapes

» The overlap can be obtained via a scalar product
(51, %2) :/\/51(’(1,k27k3)52(k1,k27ka)W(kl,kzyka)dkldkzdk& (31)

the weight function w(ki, k2, k3) is an arbitrary non-negative function.

» The projection of the bounce bispectrum in the standard shapes’
bispectra is very small:

COSH[bouncc,loca]} — 2.360 x l[]_4. COSH{}JL’UUCC-IOC""]] = 7117 % 1(]—5
cos H(bmmce.cqui} — 2.364 x l(]_i. COSH{qunce,cqui] — 7.071 % 1(]—5_
cos H(bouncc_urtho} — _3.085 » 10_5 o8 H(bouncc.ortho] — _1.906 % 1[]—3
forn=1/6 for n =0.21
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Conclusions

» In all cases with sufficient non-Gaussianity to mitigate the large scale
anomalies of CMB data, the bispectrum should be detectable in the
Planck data.

» The largest contributions to the SNR come from triples (¢1, {2, {3)
where at least one multipole is smaller than 4, for which the signal is
larger than or comparable to the square root of the variance.

» Adding polarisation data may enhance the SNR by about a factor of
two.

» These findings motivate us to perform a search for this bispectrum in
the actual Planck data.
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