The CMB bispectrum from bouncing cosmologies

JCAP11(2021)024, PCMD, Ruth Durrer, Nelson Pinto-Neto

Paola C. M. Delgado

Uniwersytet Jagielloński
Faculty of Physics, Astronomy and Applied Computer Science

UJ Particle Physics Phenomenology and Experiments Seminar, November 22, 2021

Outline

Introduction

CMB quantities and non-gaussianity
CMB anomalies at large scales
A proposal to solve the anomalies

The bispectrum in the bounce+inflation model
Numerical calculations
Cosmic variance
Signal-to-noise ratio
Overlap with standard bispectrum shapes

Conclusions

CMB quantities and non-gaussianity

- A very hot Universe, where protons and electrons are free; photons have a short mean free path due to Thomson scattering.
- Temperature decreases ($\sim 3000 \mathrm{~K}$): recombination; photons reach us.
- The last-scattering surface: radiates as a black body; microwaves nowadays; coming from every direction; $\Rightarrow \mathrm{CMB}$.

Figure 1: Figure from the COBE satellite (https://lambda.gsfc.nasa.gov/product/cobe/).

Figure 2: Figure from Planck 2018.

- The CMB temperature power spectrum: Sachs-Wolfe plateau at large scales (modes outside the horizon at recombination); peaks caused by acoustic oscillations for scales inside the horizon; Silk damping for smallest scales (recombination is not instantaneous and free path of photons is not zero).

Figure 3: Figure from Planck 2018 (arXiv:1807.06205 [astro-ph.CO]).

- Temperature fluctuations:

$$
\begin{equation*}
\frac{\Delta T(\theta, \varphi)}{T_{0}} \equiv \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m}^{T} Y_{\ell m}(\theta, \phi) \tag{1}
\end{equation*}
$$

$\ell=1$ is highly contaminated by the kinetic dipole.

- CMB TT power spectrum:

$$
\begin{equation*}
\left\langle a_{\ell m}^{T} a_{\ell^{\prime} m^{\prime}}^{T}\right\rangle=C_{\ell}^{T T} \delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \tag{2}
\end{equation*}
$$

- Observationally, we only have one sky. So we average over m:

$$
\begin{equation*}
\hat{C}_{\ell}=\frac{1}{2 \ell+1} \sum_{m=-\ell}^{\ell}\left|a_{\ell m}\right|^{2} \tag{3}
\end{equation*}
$$

When ℓ is small, we have cosmic variance.

- Gravity is non-linear. What about the 3-point correlation functions?

$$
\begin{equation*}
\left\langle X\left(\mathbf{k}_{\mathbf{1}}\right) X\left(\mathbf{k}_{\mathbf{2}}\right) X\left(\mathbf{k}_{\mathbf{3}}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\right) B_{X}\left(k_{1}, k_{2}, k_{3}\right), \tag{4}
\end{equation*}
$$

where B_{X} is the bispectrum.

- B is usually classified according to the triangle's shape for which it is maximal.

Squeezed shape

Equilateral shape

- Local non-Gaussianity:

$$
\begin{equation*}
\Psi(\mathbf{x})=\Psi_{G}(\mathbf{x})+f_{\mathrm{nl}}\left(\Psi_{G}^{2}(\mathbf{x})-\left\langle\Psi_{G}^{2}\right\rangle\right), \tag{5}
\end{equation*}
$$

where the Bardeen potential has a vanishing mean.

- Great reviews: Bartjan van Tent (arXiv:2017.10802v1 [astro-ph.CO]); Ruth Durrer, The Cosmic Microwave Background.

CMB anomalies at large scales \& the lensing amplitude

- Large scale features that deviate from the $\Lambda C D M$ predictions. p-values smaller than 1% to each anomaly.
- Power suppression: lack of 2-point correlations $C(\theta)$ for $\theta>60^{\circ}$ (COBE, WMAP, Planck). The estimator of the total amount of correlations in $\theta>60^{\circ}$, given by

$$
\begin{equation*}
S_{1 / 2} \equiv \int_{-1}^{1 / 2}[C(\theta)]^{2} d(\cos \theta) \tag{6}
\end{equation*}
$$

results in $S_{1 / 2} \approx 1500 \mu K^{4}$. For $\Lambda C D M: 45000 \mu K^{4}$.

Figure 4: Figure from Craig J. Copi, Dragan Huterer, Dominik J. Schwarz, Glenn D. Starkman (arXiv:1310.3831 [astro-ph.CO]).

- Parity asymmetry: WMAP and Planck found an odd-parity preference. The estimator is given by

$$
\begin{equation*}
R^{T T}\left(\ell_{\max }\right)=\frac{D_{+}\left(\ell_{\max }\right)}{D_{-}\left(\ell_{\max }\right)} \tag{7}
\end{equation*}
$$

where $D_{+,-}\left(\ell_{\max }\right)$ measures the power spectrum in even or odd multipoles, respectively, up to $\ell_{\max }$. $\Lambda C D M$ predicts neutrality.

Figure 5: Figure from Planck 2015 (arXiv:1506.07135 [astro-ph.CO]).

- Dipolar asymmetry: can be seen in WMAP and Planck, only for large scales. Mathematically, this means a non-vanishing BipoSH coefficient $A_{\ell, \ell+1}^{1 M}$. In terms of

$$
\begin{equation*}
A_{1}(\ell) \equiv \frac{3}{2} \sqrt{\frac{1}{3 \pi} \sum_{M}\left|A_{\ell, \ell+1}^{1 M} G_{\ell}^{-1}\right|^{2}} \tag{8}
\end{equation*}
$$

Planck finds $A_{1}=0.068 \pm 0.023$.

- The lensing amplitude A_{L} : introduced as a free parameter to provide a consistency test. $A_{L}=1$ corresponds to the standard lensing in the Universe. The best-fit from Planck for $\Lambda C D M$ is more than 2σ away from 1.
- Details on the anomalies can be found in I. Agullo, D. Kranas and V. Sreenath (arXiv:2006.09605v1 [astro-ph.CO]) and references therein.

A proposal to solve the anomalies

- Bounce preceding inflation, I. Agullo, D. Kranas, V. Sreenath (arXiv: 2005.01796 [astro-ph.CO]). Scale factor around the bounce:

$$
\begin{equation*}
a(t)=a_{b}\left(1+b t^{2}\right)^{n} \tag{9}
\end{equation*}
$$

where $R_{b}=12 n b$.

- For $n=1 / 6$ (LQC), the kinetic term is the largest just after the bounce. For larger n the potential is already relevant at the bounce.
- Initial quantum state is the adiabatic vacuum in the far past. At the onset of inflation, it deviates from Bunch-Davies.
- Non-Gaussianities arise, correlating super-horizon modes and infrared scales.

Figure 6: PCMD, R. Durrer, N. Pinto-Neto

- Non-Gaussianity increases the probability that some features appear in individual realizations of the primordial probability distribution.

Figure 7: Figures from I. Agullo, D. Kranas, V. Sreenath (arXiv: 2005.01796 [astro-ph.CO])

- LQC and phenomenological model (best-fit):

n	γ	q	f_{nl} for $R_{B}=1 l_{P l}^{-2}$	f_{nl} for $R_{B}=10^{-3} l_{P l}^{-2}$
$1 / 6$	0.6468	-0.7	3326	8518
0.21	0.751	-1.24	959	4372

- Power spectrum and bispectrum:

$$
\begin{align*}
\mathscr{P}_{\mathscr{R}}(k)= & A_{s}\left\{\begin{array}{cc}
\begin{array}{c}
\left(k / k_{i}\right)^{2}\left(k_{i} / k_{b}\right)^{q} \\
\left(k / k_{b}\right)^{q} \\
\left(k / k_{b}\right)^{n_{s}-1}
\end{array} & \begin{array}{l}
\text { if } k \leq k_{i} \\
\text { if } k>k_{i} \leq k_{b}
\end{array} \\
B\left(k_{1}, k_{2}, k_{3}\right)= & \frac{3}{5}\left(2 \pi^{2}\right)^{2} f_{\mathrm{n} 1}\left[\frac{\mathscr{P}_{\mathscr{R}}\left(k_{1}\right)}{k_{1}^{3}} \frac{\mathscr{P}_{\mathscr{R}}\left(k_{2}\right)}{k_{2}^{3}}+\frac{\mathscr{P}_{\mathscr{R}}\left(k_{1}\right)}{k_{1}^{3}} \frac{\mathscr{P}_{\mathscr{R}}\left(k_{3}\right)}{k_{3}^{3}}+\frac{\mathscr{P}_{\mathscr{R}}\left(k_{3}\right)}{k_{3}^{3}} \frac{\mathscr{P}_{\mathscr{R}}\left(k_{2}\right)}{k_{2}^{3}}\right] \times \\
& \exp \left(-\gamma \frac{k_{1}+k_{2}+k_{3}}{k_{b}}\right) .
\end{array}\right. \tag{10}
\end{align*}
$$

The bispectrum in the bounce+inflation model

- Recalling the definition of the bispectrum:

$$
\begin{gather*}
\frac{\Delta T}{T}(\mathbf{n})=\sum_{\ell m} a_{\ell m} Y_{\ell m}(\mathbf{n}) \\
\left\langle a_{\ell_{1} m_{1}} a \ell_{2} m_{2} a \ell_{2} m_{3}\right\rangle=\mathscr{G}_{m_{1} m_{2} m_{3}}^{\ell_{1} \ell_{2} \ell_{3}} b_{\ell_{1} \ell_{2} \ell_{3}}=\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) B_{\ell_{1} \ell_{2} \ell_{3}} \tag{13}
\end{gather*}
$$

with

$$
\mathscr{G}_{m_{1} m_{2} m_{3}}^{\ell_{1} \ell_{2} \ell_{3}}=\sqrt{\frac{\prod_{j=1}^{3}\left(2 \ell_{j}+1\right)}{4 \pi}}\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=g_{\ell_{1} \ell_{2} \ell_{3}}\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)_{(14)}
$$

- $b_{\ell_{1} \ell_{2} \ell_{3}}$ is the reduced bispectrum. It vanishes if the triangle inequality, $\left|\ell_{1}-\ell_{2}\right| \leq \ell_{3} \leq \ell_{1}+\ell_{2}$, is not satisfied or if the sum $\ell_{1}+\ell_{2}+\ell_{3}$ is odd.
- Within linear perturbation theory,

$$
\begin{align*}
b_{\ell_{1} \ell_{2} \ell_{3}}= & \left(\frac{2}{\pi}\right)^{3} \int_{0}^{\infty} d x x^{2} \int_{0}^{\infty} d k_{1} \int_{0}^{\infty} d k_{2} \int_{0}^{\infty} d k_{3} \times \\
& {\left[\prod_{j=1}^{3} \mathscr{T}\left(k_{j}, \ell_{j}\right) j_{\ell_{j}}\left(k_{j} x\right)\right]\left(k_{1} k_{2} k_{3}\right)^{2} B\left(k_{1}, k_{2}, k_{3}\right) } \tag{15}
\end{align*}
$$

where, at large scales,

$$
\begin{equation*}
\mathscr{T}(k, \ell) \simeq \frac{1}{5} j_{\ell}\left(k\left(t_{0}-t_{\mathrm{dec}}\right)\right) . \tag{16}
\end{equation*}
$$

- The bispectrum is separable in k-space:

$$
\begin{align*}
& \left(k_{1} k_{2} k_{3}\right)^{2} B\left(k_{1}, k_{2}, k_{3}\right)=B_{0}\left[f\left(k_{1}\right) f\left(k_{2}\right) g\left(k_{3}\right)+f\left(k_{1}\right) f\left(k_{3}\right) g\left(k_{2}\right)+f\left(k_{3}\right) f\left(k_{2}\right) g\left(k_{1}\right)\right] \tag{17}\\
& B_{0}=\frac{3}{5}\left(2 \pi^{2}\right)^{2} f_{\mathrm{n} 1} \tag{18}\\
& f(k)=\frac{\mathscr{P}_{\mathscr{R}}(k)}{k} \exp \left(-\gamma k / k_{b}\right) \tag{19}\\
& g(k)=k^{2} \exp \left(-\gamma k / k_{b}\right) \tag{20}\\
& X_{\ell}(x, k)=\mathscr{T}(k, \ell) j_{\ell}(k x) f(k), \tag{21}\\
& Z_{\ell}(x, k)=\mathscr{T}(k, \ell) j_{\ell}(k x) g(k), \tag{22}\\
& X_{\ell}(x)=\int_{0}^{\infty} d k X_{\ell}(x, k), \tag{23}\\
& Z_{\ell}(x)=\int_{0}^{\infty} d k Z_{\ell}(x, k), \tag{24}\\
& b_{\ell_{1} \ell_{2} \ell_{3}}=\left(\frac{2}{\pi}\right)^{3} B_{0} \int_{0}^{\infty} d x x^{2}\left[X_{\ell_{1}}(x) X_{\ell_{2}}(x) Z_{\ell_{3}}(x)+X_{\ell_{1}}(x) X_{\ell_{3}}(x) Z_{\ell_{2}}(x)+\right. \\
& \left.+X_{\ell_{3}}(x) X_{\ell_{2}}(x) Z_{\ell_{1}}(x)\right] . \tag{25}
\end{align*}
$$

Numerical calculations

- The integrals over $k, X_{\ell}(x)$ and $Z_{\ell}(x)$ peak at $x=t_{0}-t_{\text {dec }}$.

Figure 8: PCMD, R. Durrer, N. Pinto-Neto.

- Numerical results for the reduced bispectrum:

Figure 9: PCMD, R. Durrer, N. Pinto-Neto.

- The local bispectrum:

$$
\begin{equation*}
b_{\ell_{1} \ell_{2} \ell_{3}}^{\text {(local }}=\frac{3 f_{\mathrm{nl}}\left(2 \pi^{2} A_{s}\right)^{2}}{4 \times 5^{4}}\left(\frac{1}{\ell_{1}\left(\ell_{1}+1\right) \ell_{2}\left(\ell_{2}+1\right)}+\frac{1}{\ell_{1}\left(\ell_{1}+1\right) \ell_{3}\left(\ell_{3}+1\right)}+\frac{1}{\ell_{2}\left(\ell_{2}+1\right) \ell_{3}\left(\ell_{3}+1\right)}\right) \tag{26}
\end{equation*}
$$

- Comparison between the bispectrum of the present model and the local bispectrum: $\left(\ell_{1}=4, \ell_{2}=\ell_{3}=\ell, f_{n l}(\right.$ local $\left.)=5.0\right)$:

Figure 10: PCMD, R. Durrer, N. Pinto-Neto.

Cosmic variance

- Estimator for the bispectrum:

$$
\hat{B}_{\ell_{1} \ell_{2} \ell_{3}}=\sum_{m_{1} m_{2} m_{3}}\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \tag{27}\\
m_{1} & m_{2} & m_{3}
\end{array}\right) a_{\ell_{1} m_{1}} a \ell_{2} m_{2} a \ell_{2} m_{3} .
$$

- Its variance reads

$$
\begin{equation*}
\operatorname{var}\left(B_{\ell_{1} \ell_{2} \ell_{3}}\right)=\left\langle\hat{B}_{\ell_{1} \ell_{2} \ell_{3}}^{2}\right\rangle \simeq C_{\ell_{1}} C_{\ell_{2}} C_{\ell_{3}}\left(1+\delta_{\ell_{1} \ell_{2}}+\delta_{\ell_{1} \ell_{3}}+\delta_{\ell_{3} \ell_{2}}+2 \delta_{\ell_{1} \ell_{2}} \delta_{\ell_{2} \ell_{3}}\right) . \tag{28}
\end{equation*}
$$

- For the reduced bispectrum this yields

$$
\begin{equation*}
\operatorname{var}\left(b_{\ell_{1} \ell_{2} \ell_{3}}\right) \simeq g_{\ell_{1} \ell_{2} \ell_{3}}^{-2} c_{\ell_{1}} c_{\ell_{2}} c_{\ell_{3}}\left(1+\delta_{\ell_{1} \ell_{2}}+\delta_{\ell_{1} \ell_{3}}+\delta_{\ell_{3} \ell_{2}}+2 \delta_{\ell_{1} \ell_{2}} \delta_{\ell_{2} \ell_{3}}\right) . \tag{29}
\end{equation*}
$$

Figure 11: PCMD, R. Durrer, N. Pinto-Neto.

Signal-to-noise ratio

- The SNR is given by

$$
\begin{equation*}
\left(\frac{S}{N}\right)^{2}\left(\ell_{\max }\right)=\sum_{\ell_{1} \ell_{2} \ell_{3}=2}^{\ell_{\max }} \frac{b_{\ell_{1} \ell_{2} \ell_{3}}^{2}}{\operatorname{var}\left(b_{\ell_{1} \ell_{2} \ell_{3}}\right)} . \tag{30}
\end{equation*}
$$

- For this computation we use the fits to the reduced bispectrum:

Figure 12: PCMD, R. Durrer, N. Pinto-Neto.

- The SNR, considering a 70% of sky coverage, is

Figure 13: PCMD, R. Durrer, N. Pinto-Neto.

- In all cases of interest, the bispectrum should be detectable in the Planck data.

Overlap with standard bispectrum shapes

- The overlap can be obtained via a scalar product

$$
\begin{equation*}
\left\langle S_{1}, S_{2}\right\rangle=\int_{V} S_{1}\left(k_{1}, k_{2}, k_{3}\right) S_{2}\left(k_{1}, k_{2}, k_{3}\right) w\left(k_{1}, k_{2}, k_{3}\right) d k_{1} d k_{2} d k_{3}, \tag{31}
\end{equation*}
$$

the weight function $w\left(k_{1}, k_{2}, k_{3}\right)$ is an arbitrary non-negative function.

- The projection of the bounce bispectrum in the standard shapes' bispectra is very small:

$$
\begin{array}{rlrl}
\cos \theta^{(\text {bounce,local) }} & =2.369 \times 10^{-4}, & \cos \theta^{\text {(bounce,local) }} & =7.117 \times 10^{-5}, \\
\cos \theta^{\text {(bounce,equi) }} & =2.364 \times 10^{-4}, & \cos \theta^{\text {(bounce,equi) }} & =7.071 \times 10^{-5}, \\
\cos \theta^{\text {(bounce,ortho) }} & =-3.985 \times 10^{-5} & \cos \theta^{\text {(bounce,ortho) }} & =-1.206 \times 10^{-5} \\
\text { for } n=1 / 6 & & \text { for } n=0.21
\end{array}
$$

Conclusions

- In all cases with sufficient non-Gaussianity to mitigate the large scale anomalies of CMB data, the bispectrum should be detectable in the Planck data.
- The largest contributions to the SNR come from triples $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$ where at least one multipole is smaller than 4 , for which the signal is larger than or comparable to the square root of the variance.
- Adding polarisation data may enhance the SNR by about a factor of two.
- These findings motivate us to perform a search for this bispectrum in the actual Planck data.

