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Introduction

>

The mechanism of meson production in proton-proton
collisions is not fully undersood. The string-model is an
option considered e.g. in Phythia. But not all meson
production can be explained via string fragmentation.
The gluon-gluon fusion for 7. and x. quarkonium
production was shown recently to be the dominant
mechanism [1,2].

In contrast the mechanism of light meson production is
not known. Is there gluon-gluon fusion important effect ?
Recently we have considered production of £,(980)
(scalar), £(1270) (tensor) and shown that gluon-gluon
fusion is important contribution but not sufficient to
describe ALICE data.

Very recently we considered production of ¢ and 7’
mesons. Especially production of 7’ is very interesting.
Here we review our recent works.
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Description of the mechanism ~*~* — n(1S5,25)

Babiarz, Goncalves, Pasechnik, Schafer and Szczurek,
Phys. Rev. D100, 054018 (2019).

Mo (7 (@)1 (d2) = 1) = 47 (=12 42 F(QF, Q3)
Light-front representation of the transition form factor:
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Nonrelativistic quarkonium wave functions
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) Radial momentum-space wave function for different potentials. -
Radial spatial wave function are obtained by solving the Schrédinger

equation.
J. Cepila, J. Nemchik, M. Krelina and R. Pasechnik, arXiv:1901.02664 [hep-ph].
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Light-front wave functions
We treat the 7. as a bound state of a charm quark and
antiquark, assuming that the dominant contribution comes
from the cc component in the Fock-state expansion:

iz 2
Inei Py, P = Z K sl p)E (1= 2P b)) + -

\/_ z(1 — zl6‘rr3 AX
[N IPN ¢

1

Here the c-quark and c-antiquark carry a fraction z and 1 — z
respectively of the 7.'s plus-momentum. The light-front
helicites of quark and antiquark are denoted by A, X, and take
values £1. The transverse momenta of quark and antiquark

are
p.=k+zP, p.=—-k+(1-2)P. (2)

The light-cone representation is obtained by Terentev's
prescription valid for weakly bound systems.



Light-front wave functions
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Normalized transition form factor F(Q?,0)

F(Q?,0)/F(0,0)
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Normalized transition form factor F(Q?,0) as a function of photon
virtuality @2. The BaBar data are shown for comparison.

J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 81, 052010 (2010) [arXiv:1002.3000 [hep-ex]].



Transition form factor F(Q?, Q2) for
7Y = 1e(15,25)
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Transition form factor for 7:(1S) and 7-(2S) for Buchmiiller-Tye
potential. The F(Q?, Q2) should obey Bose symmetry.
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Asymptotic behaviour of Q*F(Q?,0)

The rate of approaching of @*F(Q?) to its asymptotic value predicted by
Brodsky and Lepage

G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).
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Q?F(@?,0) as a function of photon virtuality @. The horizontal lines
8,. are shown for reference.



Inclusive production of 7). quarkonia in

proton-proton collisions
The diagram below illustrates the situation adequate for the
kr-factorization calculations used in the present paper.

p
ne(15,28)

D

Rysunek: Generic diagram for the inclusive process of 7.(1S) or
1¢(2S) production in pp scattering via two gluons fusion.

|. Babiarz, R. Pasechnik, W. Schafer and A. Szczurek,
arXiv:1911.03403



k:-factorization approach

The inclusive cross section for n.-production via the 2 — 1
gluon-gluon fusion mode is obtained from

d”_/dXI/dqlf /dxz/dquxQ B3 TMI 402 - 1), (3)

The unintegrated gluon distributions are normalized such,
that in the DGLAP-limit

Ixg(x, q*
Fix. ) = ZEET) ()

Let us denote the four-momentum of the n. by P. It can be
parametrized as:

my my
— e, —=e 7,

P=(Ps,P_,P) N A
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k:-factorization approach

The phase-space element is
d*P
(2m)?

do(2 — 1) = 27)*0W(q1 + g2 — P) 5(P*> = m?) (6)

The gluon four momenta are written as

g1 = (Q1+,0> Q1)> G = (0, qx—, Cb), (7)

S S
— Z = —. 8
qi+ Xl\/;u az X2 5 ( )

We can then calculate the phase-space element as

with

dd(2 — 1) = 2m8(qr, — P+)6(aa— — P_)6P(ay + a, — P)dPLdP_d’P 6(2PLP_ — P* — ).

This gives
2 m _ dP.
dO@2 1) = 2w = bq — %ey)é(xz - Tie 6@ (q, + g5 — P)iﬁp
= g — T )s(g - T e)5D (g, + a5 — P)dyaP. (10)

s Vs Vs



k:-factorization approach
We therefore obtain for the inclusive cross section

do d%q, ) d%q, 2 @) T —
—_— = —F(x1, q —F(x,q5)6(q1 + g — P) ——— | M|, 11
i / w2 T D) [ e )% ¢ = ) G TR (1)

where the momentum fractions x; » of gluons are
X1 = —ey, Xy = —e Y. (12)
The off-shell color singlet matrix element is written in terms of

the Feynman amplitude as (we restore the color-indices):

.
q,, 4 q14+ 92— _ X1 XS _
ab _ 21 ap  d14+92— 4 ab 1X2 + ab
= = My M, = mng MG, - (13)
laillaz| la1llaz] la1llaz]

Then, we obtain for the cross section

do d’q, 2 d’qy 2 §(2) A P———
—— = | —F(x, — F(x,q3) 6 +q, — P)—=|nfin; M , 14
4yd2P / et (>, a1) dt (2, @) 87y + a2 = P) I, My (14)



k:-factorization approach
The CS matrix element squared averaged over color is

—\ 1 B
[nfnz M, | = m z; |n:nuMZ?,\ ) (15)
(o} a,
The matrix element has the form
":";Mibu = drag(=ila, ‘12] ] 2

1 1
47ro¢5(71)56ab

/e
It is related to the v*v*n, transition formfactor through the
relation

la1, 421 (a3, 43) (16)

F(Q2, Q) = e\/N, I(q%, a3). (17)

The vector product [q;, 5] is defined as

(91, 9] = a1 a5 — a1 a5 = |qyl|qy| sin(é1 — ¢2) . (18)



k:-factorization approach
Then, the averaged matrix element squared becomes

_72 1

|”Z”uMuu| = 167° aS4N (g1, q2] (Q1,¢I2 Zéabéab
= 40l la;,q.] /(a2 a3) (19)
- ™ aSNC(Ng—].) q1,49> qi,49;

This leads to our final result:

—]—'x —]—'x 5@ + 91,9 Iq q
dyd2P / 1q1/ 2q2) q1 q — ) Ne(V2 — )\[1 o] (a7, 2)\

In real calculation we take ;7 = m?% and for renormalization
scale(s)

o — as(max(mf, gi1))as(max(mi. a¢5)) - (20)



Normalization of the g*g*n.(1S5,2S) form factors

From the proportionality of the g*g*n. and ~v*v*n. vertices to
the leading order (LO), we obtain, that at LO:

% )2 fLo(me — 7)., (21)

where the LO v width is related to the transition form factor
for vanishing virtualities through

™
Mo(ne —1v) = ZaimMSCIF(O, 0)°. (22)

At NLO, the expressions for the widths read (see Lansberg et

al.)

20 — 72 as)

3 ™

FLo(ne — v7v) (1 -

M(ne — ~vv)

Fne—gg) = TLo(ne — &8) (1 +4.8 %) (23)



Unintegrated gluon distributions

We use a few different UGDs which are available from the literature, e.g. from the
TMDLib package (Hautmann et al.) or the CASCADE code (Jung et al.).

1. Firstly we use a glue constructed according to the prescription initiated in
(Kimber et al.) and later updated in (Martin et al.), which we label below as
“KMR". It uses as an input the collinear gluon distribution from Harland-Lang
et al.

2. Secondly, we employ two UGDs obtained by Kutak. There are two versions of
this UGD. Both introduce a hard scale dependence via a Sudakov form factor
into solutions of a small-x evolution equation. The first version uses the solution
of a linear, BFKL evolution with a resummation of subleading terms and is
denoted by "Kutak (linear)”. The second UGD, denoted as “Kutak (nonlinear)”
uses instead a nonlinear evolution equation of Balitsky-Kovchegov type. Both
of the Kutak's UGDs can be applied only in the small-x regime, x < 0.01.

3. The third type of UGD has been obtained by Hautmann and Jung from a
description of precise HERA data on deep inelastic structure function by a
solution of the CCFM evolution equations. We use “Set 2".



KMR UGDF

For the case of the KMR UGD, it has recently been shown
(Maciula, Szczurek), that it includes effectively higher order
corrections of the collinear factorization approach. In this
sense should give, within our approach, a result similar to that
found recently in the NLO approach (Feng, Lansberg et al.) at
not too small transverse momenta.

In our approach we can go to very small transverse momenta
close to pr = 0.



Results for the LHC
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Rysunek: Two-dimensional distributions in (x1, g17) (left panel)
and in (x2, g27) (right panel) for n.(1S) production for \/s = 8
TeV. In this calculation the KMR UGD was used for illustration.



Results for the LHC
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Rysunek: Distributions in logyq(x1) or logio(x2) (left panel) and
distributions in g1 7 or ga1 (right panel) for the LHCb kinematics.
Here the different UGDs were used in our calculations. Here we
show an example for /s = 8 TeV.



Results for the LHC
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Rysunek: Unintegrated gluon densities for typical scale ;2= 100
GeV? for 11c(1S) production in proton-proton scattering at LHCb
kinematics.

UGDs are quite different but ...



Results for the LHC
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Rysunek: Differential cross section as a function of transverse
momentum for prompt 7-(1S) production compared with the
LHCb data (Aaij et al.) for \/s =7,8TeV and preliminary
experimental data (Usachov PhD) for /s = 13 TeV. Different
UGDs were used. Here we used the g*g* — 1-(1S) form factor
calculated from the power-law potential.

F(0,0) extracted from I, (15) at NLO accuracy



Results for the LHC, 7.(25)
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Rysunek: Differential cross section as a function of transverse
momentum for prompt 7-(2S) production for /s = 7,8,13 TeV.

F(0,0) extracted from I, (»5) at NLO accuracy



Results for the LHC, different form factors
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Rysunek: Transverse momentum distributions calculated with
different form factors obtained from different potential models of
quarkonium wave function and one common normalization of
|F(0,0)].



Results for the LHC
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Rysunek: Distributions calculated with several different form
factors obtained from different potential models of quarkonium.

Different F(0,0).



Results for the LHC, integrated cross section
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Rysunek: The integrated cross section computed within LHCb
range of pr and y with our transition form factors, compared to
experimental values. Here red crosses represent values for
Buchmiiller-Tye potential (B-T) and deltoids for Power-law
potential (P-law).

Somewhat faster grow for experimental data.



Results for the LHC, effect of form factor
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Rysunek: Comparison of results for two different transition form
factor, computed with the KMR unintegrated gluon distribution.
We also show result when the (qf-,-, qu) dependence of the
transition form factor is neglected.

Is the form factor included in collinear calculations ?
Not always.



Results for the ATLAS/CMS kinematics

— 900, T < T

=3 T T T | r T T T T T T LI

X [FFfor power-daw 1% T (5= 8Tev FF for power-law ]

U’ﬂasofF normalized to F(0,0)=0.079[GeV/] A Q 2501~ 2 = FF normalized to F(0,0)=0.079[GeV/] —

S "UE-t KMR from MMHT2014nl0 1 8 ' 1

ke 1£ r . L o KMRfrom MMHT20L4nl0 |

_8 F— = Hse2 4 o r :‘7 Sy — - Hser q

£ i 5 2 / h ]

750 F 5 - 8 C /’,' 25<y<25 ]

£ X ] L/ \ ]

F i Vo nas 3 ol \‘\ 65 GeVep <14 GeV B

00 :l \i k=aTev E Ll \\ 1

o501 , \ eseevepsucey] \ ]

F i | 25<y<2s 1 ]

600 Fl l 9 ]

550 ; ‘ 4 ]

[ l I R I | NI [P RPN B R S R
-6 5 -4 3 2 1 0 2 4 6 8 10 12 14

log (x GeV,

96() a, (Gev)

Rysunek: Distribution in logyg(x1) or logig(x2) (left panel) and
distribution in g1 1 or go1 (right panel) for ATLAS or CMS

conditions.

Not so small xi, x» as for LHCb.



Results for the ATLAS/CMS kinematics
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Rysunek: Transverse momentum distribution of prompt 7-(1S) for
—25<y<25and/s=7TeV.



f,(980) tproduction in 7 “v* fusion
0 y

In the formalism presented by in Pascalutsa et al. the covariant
matrix element for the v*v* — 1,(980) process is written as:

MW = Amerem — {—R‘“’(fh,fh) Frr(@, Q3)
my,
v Q L@,
+5 <q{‘+ qu;) (q2 +72q1) FLL(Q%:Q%)] , (24)

where v = (q1 - q2), X = v? — ¢7g3, and

R™ (q1,q2) = —g"” + % [v(atas +asal) — diabay — a3at'ay] . (25)
Here g; and g, denote the momenta of the photons,
Q? = —q3, Q5 = —q3, and my, is mass of the f,(980) meson.
In Eq. (83), the scalar meson structure information in encoded
in the form factors F++ and F;; which are functions of the
virtualities of both photons. Fr+ or F;; correspond to the
situation where either both photons are transverse or
longitudinal, respectively. By definition the form factors are
dimensionless.



f,(980) production in *~* fusion
The two-photon decay width of the ,(980) meson can be

calculated as:
2

T
[(£(980) — vv) = 46“1 my, | Fr7(0,0)]2. (26)

Only Frr form factor can be constraint from (26). The
radiative decay width is relatively well known. Using the
average decay width

[(£,(980) — 77) = 0.31 keV.. (27)

and mg, = 980 MeV we obtain from (26) |Fr7(0,0)| = 0.087.
Then the transverse form factor is parametrized as:

Frr(Q?,@3) Ny
Frr(0,0)  \Q+Q@+Ay,
Frr(@, Q) A ? 29)

Frr(0,0) QR+ @+A) 7

where cut-off parameters Ay, or Ap are expected to be of
order of 1 GeV. Both monobpole (98) and dipole(59)



f,(980) production in v*~* fusion

The F;; form factor is rather unknown but via construction do
not enter the formula for the radiative decay width (26) as

Fie(0, Q3) = Fui(QF,0)=0. (30)

We propose to use the following parametrization for the F;;
form factor:

@? 0

2 2

FLL(Q%; Q%) = Ruyrr Y2
0

Such a form is consistent with a microscopic calculation for
Y*v* — Xco (Babiarz et al.) using quarkonium wave functions
obtained from the potential models. In our present case we
expect R/t ~ 0.5 and My ~ my.



Color singlet g*g* — £,(980) fusion

Rysunek: General diagram for inclusive 15(980) production via
gluon-gluon fusion in proton-proton collisions.



Color singlet g*g* — £,(980) fusion

The differential cross section for inclusive f5(980) meson
production via the g*g* — £,(980) fusion in the
k.-factorization approach can be written as:

dfdi,, :/(f%lf(n,q?)/ fgf(&q%ﬁ(z)(qﬁqrp) @W (32)
Here q;, q, and p denote the transverse momenta of the
gluons and the f,(980) meson. M« «_¢ is the off-shell
matrix element for the hard subprocess and F, are the gluon
unintegrated distribution functions (UGDFs) for both colliding
protons. The UGDFs depend on gluon longitudinal momentum

fractions x; » = mt exp(+y)/+/s and g3, g3 entering the hard
process.



Color singlet g*g* — £,(980) fusion

The off-shell matrix element can be written as (we restore the
color indices a and b)

v
ab __ qltq2t ab a1+ q>— +u o, —v ab X1X08 +u o, —v ab
T n*n S *nTY M3, (33)

" aillgs lg111q2] m 20 qy|qa|

with the lightcone components of gluon momenta
i+ = x1\/5/2, Qo = X2\/S/2.
The g*g* — 1,(980) coupling entering in the matrix element
squared can be obtained from that for yv*y* — £,(980)
coupling by the following replacement:

5 ) 1 1

(6% —

em TS AN (N2 —1) (< >




Color singlet g*g* — £,(980) fusion

(< es >) above strongly depends on the flavour structure of
the wave function. In the following we consider a few
examples of quark-flavour composition:

o £(980)) = \% (vm) + dd)) | (35)
o £(980)) = s3), (36)
o £(980)) = % ([su][sa]) + [sd][sd])) . (37)



Color singlet g*g* — £,(980) fusion

In realistic calculations the running of strong coupling
constants must be included. In our numerical calculations
presented below, we set the factorization scale to /ﬁ_— = m%-,

and the renormalization scale is taken in the form:

of — ag(max {m7, qi}) as(max {m7. q3}) . (38)



Color evaporation model

Rysunek: General diagram for inclusive f(980) production in
proton-proton collisions in the color evaporation approach.



Color evaporation

dog(pg) ) ™ot 3p _  dogg(Mqa; Pqg) (3, = mh 5
Cdpy Peem . d*Pag dqumé (P — M—qapqq), (39)
where Pcgy is the probability of the gg — £(980) transition
which is fitted to the experimental data, Mgz and P,z = | P
are the invariant mass and momentum of the gg system. Here

we take



Color evaporation
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Rysunek: Typical k;-factorization process with the production of
ut and dd pairs that are intermediate state for color evaporation.



Color evaporation

PDF /

Rysunek: An alternative collinear approach with the production of
ut and dd pairs associated with soft gluon emission that are
intermediate state for color evaporation.




Numerical results

To convert to the number of £,(980) mesons per event, as was
presented in Lee (PhD thesis), we use the following relation:

N _ 1 do
dpt Oinel dpt ‘

(40)

The inelastic cross section for /s = 7 TeV was measured at
the LHC and is:

Ol = 73.15+ 1.26 (syst.) mb, (41)
Oma = 71.3440.36 (stat.) £ 0.83 (syst.)mb, (42)

as obtained by the TOTEM and ATLAS collaborations,
respectively. In our calculations we take o, = 72.5 mb.



Numerical results
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Rysunek: The f,(980) meson transverse momentum distributions
at /s =7 TeV and |y| < 0.5. The preliminary ALICE data from
[?] are shown for comparison. For the g*g* — £(980) contribution
two different UGDFs are used: the JH (left panel) and KMR (right
panel). Here, the s5 flavour wave function of £,(980) is taken into
account Shown are TT and LL components in the amplltude and

. N .



Results, color evaporation

In the present study the cross sections for ui and dd or
alternatively ss minijet pair production are calculated in the
k.-factorization approach or in the collinear approach. In both
cases the calculations are done with the help of the KaTie
Monte Carlo code (van Hameren). Considering production of
(soft) minijets a real problem is a regularization of the cross
section at small transverse momenta. Here we follow the
methods adopted for collinear approach in PYTHIA and
multiply the calculated cross section by a somewhat arbitrary
suppression factor:

4
p
Foup(pe) = -

((p2)> + p2)*’
where p? is a free parameter of the model. In the following
calculations we take different values of p?, in order to show
sensitivity of the results to the choice of this parameter. The
parameter goes also into the argument of the strong coupling

(43)



Results, color evaporation

Technically, in the numerical calculations here, the suppression
factor includes the fact that the transverse momenta of

outgoing minijets are not balanced and it takes the following
form:

(2)( 2 2 pi P

Fsu (pl » P2 ) = - X - : (44)
I O ST s o

The KaTie Monte Carlo generator does not have any problems

with the generation of the events in the case of the 2 — 2

processes, even if there is no additional cut-off on the outgoing

minijets transverse momenta (thus low-p; cuts are not

necessary here). The generated events for massless

quarks/antiquarks are weighted by the suppression factor (44).



Results, color evaporation, k;-factorization
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Rysunek: The transverse momentum distribution of ,(980) for
the KMR-CT14lo UPDFs for different p? in (44) for the gg-fusion
(left) and gg (right) mechanisms. The calculations were done for
Mgz € (0.88,1.08) GeV.



Results, color evaporation, k;-factorization
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Results, color evaporation model, k;-factorization
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Rysunek: Mgg invariant mass distribution for three different
quark/antiquark masses specified in the figure.



Results, color evaporation, k;-factorization
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Rysunek: The transverse momentum distributions of £,(980) for
the KMR UPDFs for two masses of produced quark/antiquark:

mg = 0.1 GeV (dotted) and mg = 0.3 GeV (dashed). Calculations
were done in the qg invariant mass region M.z < (0.88,1.08) GeV.



2 — 3 partonic processes
In the calculations we take into account the 2 — 3 partonic
processes at the tree-level. So here the gg-pair is associated
with extra gluon or quark which comes from the hard matrix
elements. Here we include all the partonic subprocesses with
gg-, qg- and gg-types of initial states. The full list included is:

>  gg-fusion:
gg — guli, gg — gdd
» gg-interaction:
gu — uut, gd — duti, gs — sut, gu — oul, gc_l — dul, g5 — 5u,
ug — uuu, dg — dul, sg — suu, ug — oul, dg — dul, 5g — sul,
gu — udd, gd — ddd, gs — sdd, gii — Gdd, gd — ddd, g5 — 3dd,
ug — udd, dg — ddd, sg — sdd, g — udd, dg — ddd, sg — 5dd
» gg-annihilation:
ul — guli, dd — gul, s5 — guli, Tu — gull, dd — gul, 55 — gu,
dd — gdd, ut — gdd, s5 — gdd, dd — gdd, tu — gdd, 5s — gdd

In the case of the collinear calculations of the 2 — 3 processes
the suppression factor takes the following form:

p%t % pgt % pgt
(P2 +p3. (P22 + P35, (PR)?+ p3

Fs(l?}))(pfﬁ pgt? pgt) = ‘(45)



Collinear approach, 2 —3 partonic processes
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Rysunek: The £,(980) meson transverse momentum distributions
at /s =7 TeV and |y| < 0.5, calculated in the color evaporation
model based on the collinear approach, using the CT14lo (left) and
MMHT2014lo (right) PDFs together with the preliminary ALICE
data (Lee thesis). The calculations were done in quark-antiquark
invariant mass region M,z € (0.88,1.08) GeV. Here the gg, qg and
qqg induced interaction mechanisms are shown separately. Shown
are results for the light qq scenario (35) for the flavour wave
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Introduction to £, production




Ewerz-Maniatis-Nachtmann (EMN) vertex

FE e @) = 235y, M) (a1, 42) FO(QR, @2)
by T2 (a1,02) FO(QF.Q3), (46)

with two rank-four tensor functions,

1

0

rE“)mA(‘h; P) = [(ql C9)8ur — qZp,qlu} [qqux + @ q1x — E(‘h : qz)gm\] ) (47)
2

FEU),M\(QD @) = (91 @2)(8uxgux + 8ur8ur) + 8ur(d1s 2 + 2910)

—A1, BNEuk — Glu R2r8ur — RudINEVE — 2491k 80X
—[(q1 - ®2)Eur — 9@2u910] 8k (48)



Ewerz-Maniatis-Nachtmann (EMN) vertex

To obtain af, and by, in (46) we use the values

F(f, — vy) = (2.93 4 0.40) keV ,
helicity zero contribution ~ 9% of I'(f, — 7).

Using the exp. decay rate

mg 1
(= 1) = g (Gmloel? + e 7).

and assuming af,, > 0 and by, > 0, we find

afy = Qem X 1.17 GeV 7?2,
bty = Qom X 2.46 GeV ™!,

where a.,, = €?/(47) =~ 1/137 is the electr. coupling
constant.



Pascalutsa-Pauk-Vanderhaeghen (PPV) vertex

Poppe and Pascalutsa et al. shown that the most general
amplitude for the process v*(q1, A1) + 7" (g2, A2) — H(A),
describing the transition from an initial state of two virtual
photons to a tensor meson f, (J¢ = 2+%) with mass my, and
helicity A = 2, +1, 0, involves five independent structures
(invariant amplitudes).



Pascalutsa-Pauk-Vanderhaeghen (PPV) vertex

In the formalism presented by Pascalutsa et al. the
v*v* — £(1270) vertex is parameterized as

fr s
FLZJJQ(QD @) = A47maem { |:R}Ui(q1a @)RuA(q1, @) + ax Ruv (a1, @2)(a1 — @) (@1 — qz)x]

x — 12, @2)
mfz

@ 1 )42 A2
+Ruk(a1, @2)(a1 — @) | 91 + — % o T(QL, @)
H

4 1 ),2 o2
+Ruk(q1; @2)(q2 — g1)x | 920 + - qw ;T (@3, Q1)
p

1
+Ruv (a1, @2)(a1 — a2)k (a1 — @2)a — T(O’T)(les @)
f

Qf Q3 L 0,2 2
+ |9+ —au Qv+ —qw | (@1 —@)slar —@)x—= T 7(Q, Q) 0
(53)



Pascalutsa-Pauk-Vanderhaeghen (PPV) vertex

where photons with momenta g; and g, have virtualities,

Q=—-qand @G =-¢ s=(q+q)=22-0-G

X=1v>-q2q¢3, v=1(q1- @), and

1 2 2

Ruv(91, 62) = gt V(G190 + D 1) — G oo — G310
(54)

TMN(Q?, Q3) are the v*7* — £(1270) transition form factors

for A £,(1270) helicity.For the case of helicity zero, there are

two form factors depending on whether both photons are

transverse (superscript T) or longitudinal (superscript L).

We can express the transition form factors as

TM(QF, @) = FV(QE, @) TM(0,0). (55)

In the limit Qf, — 0 only T®7) and T® contribute.



EMN vs PPV vertices

Comparing the two approaches at both real photons
(Q? = @ =0) and at /s = my, we found the correspondence

3
mg,

Ao, TOT(0,0) = —ay,, - (56)
AT e TP(0,0) = —bgyy 2y, . (57)



g g" — £(1270) form factor(s)
,(1270) is extended, finite size object and one can expect an
additional form factor(s) F(Q%, Q3) associated with the gluon
virtualities for the g*g* — £, vertex. In our work the form
factor is parametrized as:

/\2
F@®) = grrorm (58)
N2 ?
AE®D - (grorm) - 69
> N N
F(Qb Q2) Qf +/\% Qg _}_/\% ’ (60)
2 A A
F(Q1>Qz) = (61)

(QF +M3)* (B + A3
where A is a parameter whose value is expected to be close to

the resonance mass.
No form factor in earlier work by Jeon et al.



k:-factorization approach

f2(1270)

Rysunek: General diagram for inclusive f,(1270) production via
gluon-gluon fusion in proton-proton collisions.



k:-factorization approach

The differential cross section for inclusive £,(1270) meson
production via the g*g* — £(1270) fusion in the
k.-factorization approach can be written as:

do d*q; d’q, 2
_Yv j: .q /_]: ’ 5 _
dyd2p / q1 sba,q1) [ — p ¢(x2,a3) 0 (q1 + g, — p)
(X1X2$)2 ‘Mg g* H7(2| : (62)

Here g;, g, and p - the transverse momenta of the gluons and
the £,(1270) meson. The f, meson is on-shell and p? = m%.
Mg+, is the off-shell matrix element for the hard subprocess
and F, are the unintegrated gluon distribution functions (UGDFs).
The UGDFs depend on gluon longitudinal momentum fractions
x12 = m7exp(+y)//s and q2, g3 entering the hard process. In
principle, they can depend also on factorization scales /ﬁ_-’,-,
i=1,2. We assume u%l = N/2r72 = m2T Here mt is transverse

mass of the £(1270) meson; mr = \/p? + m . The 6@ function
above can be eliminated bv introducine a. - aa and a. — a-



k:-factorization approach

The off-shell matrix element can be written as (we restore the
color-indices a and b)

X1X2S
2|q4]|q,|

ab — qftqgt ;3“[; — q1+q2— n+“n_VMZ?, —
lq1|q2] |q1/|q2]

+u —v ab
T MG, (€

with the lightcone components of gluon momenta
g1+ = X11/5/2, g2— = x21/5/2. Here the matrix-element reads

M, = TE (que, goe) (€2 ()" (64)

where €(%) is the polarisation tensor for the £,(1270) meson.



k:-factorization approach, energy-momentum
tensor

In the k;-factorization approach in Jeon et al. the matrix
element squared was written as:

_ 1
2
[Mgrgx 512 = " E [Mgxgx |

AL A2: g,

1 1 At py Rtvy oy Byuqv ) At py Rt v, azBougv ’
- - E — L Z LyeiP1iM (g, (go) P (p) 2—2(V 272K2¥2 (g, ‘72))

4 (N2 —1)2 Cits ae P ’ 181,025 Cits Dt b ’

ab

1 ) Jei B X1X25 2
_ 2 o161 202
=-——___p H s G2t )H ) , 6

T oy By gy PV a1 @) H 272 (qne, a2e) (2%%) (

where X1, Ay, /\f2 are the helicities of the gluons and f, meson, a, b are color indices, N¢ is the number of colors,

V:[’ﬁ‘“/ is the gg — f, vertex. (see Jeon et al.) and k &= O(0.1 GeV) is to be fixed by experiment.
No form factor(s), no as.



k:-factorization approach

The g*g* — £(1270) coupling entering in the matrix element
squared can be obtained from that for y*y* — £(1270)

coupling as:
1 1
2 2
. 66

Here (< €7 >)* = 25/162 for the \%2 (uU - d(_f) flavour
structure.

In realistic calculations the running of strong coupling
constants must be included. In our numerical calculations
presented below the renormalization scale is taken in the form:

2 2 0 2 2
oy — as(max {m7, q1}) as(max {m7, q3}). (67)
The Shirkov-Solovtsov prescription is used to extrapolate down
to small renormalization scales. The strong coupling constant
was not included by Jeon et al.



A simple 77 final-state rescattering model

Rysunek: General diagram for the 77 final-state rescattering
leading to 1,(1270) production in proton-proton collisions.

Both 777~ and 7270 rescatterings may lead to the production
of the £(1270) meson.



A simple 77 final-state rescattering model

The spectrum of pions will be not calculated here but instead
we will use a Lévy parametrization of the inclusive 7° cross
section for /s = 7 TeV. At the ALICE energies and

midrapidities we assume the following relation:

| | :>7Ft :>7Ft ' ' :>7Ft 68

Our approach here is similar in spirit to color evaporation
approach considered, e.g. for J/1.



A simple 77 final-state rescattering model

We write the number of produced £,(1270) per event as

dpyddy dN™  dN™
2m 21 dyidpy: dy>dpo:

N = /dY1dP1t/dY2dP2t

Tr—f

(69)
where dN™/(dydp;) is number of pions per interval of rapidity
and transverse momentum. Here we use the Tsallis
parametrization of 7° at \/s = 7 TeV (Abelev et al.). Above
P, _r, parametrizes probability of the 777~ and 7%7°
formation of £,(1270) as well as probability of its survival in a
dense hadronic system. It will be treated here as a free
parameter adjusted to the £,(1270) data from the Lee thesis.
The distribution dN™/(dydp;) is obtained then by calculating
y and p; of the £(1270) meson and binning in these variables.
The effect of hadronic rescattering is also discussed recently by
Utheim and Sjostrand.



Numerical Results

To convert to the number of £(1270) mesons per event
(ALICE data) we use the following relation:

N _ 1 do
dpt Oinel dpt ‘

(70)

The inelastic cross section for /s = 7 TeV was measured at
the LHC and is:

Ol = 73.15+ 1.26 (syst.) mb, (71)
oma = 71.34+0.36 (stat.) £ 0.83 (syst.)mb, (72)

as obtained by the TOTEM (Antchev et al.) and ATLAS (Aad
et al.) collaborations, respectively. We take oy, = 72.5 mb.



Numerical Results
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Rysunek: The £,(1270) meson transverse momentum distributions
at /s =7 TeV and |y| < 0.5. The preliminary ALICE data from
Lee thesis. The results for the EMN (left panel) and PPV (right
panel) g*g* — £(1270) vertex for different F(Q3?, Q3) ff are

shown.

In this calculation the JH UGDF was used.



Numerical Results
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Rysunek: The £,(1270) meson transverse momentum distributions
at /s =7 TeV and |y| < 0.5 together with the preliminary ALICE
data. Shown are the results calculated in the two approaches,
EMN (left panel) and PPV (right panel) vertices, and the helicity-0
and -2 components separately and their coherent sum (total). Here
we used dipole form factor parametrization with Ap = my,. The
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Numerical Results
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Rysunek: The £,(1270) meson transverse momentum distributions
at /s =7 TeV and |y| < 0.5 together with the preliminary ALICE
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JH (solid lines) and KMR (dashed lines), are shown. In the right
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Numerical Results

pp - £,(1270) + X, JH UGDF pp - £,(1270) + X, JH UGDF
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Rysunek: Two-dimensional distributions in gluon transverse
momenta for the JH UGDF and for two g*g*£,(1270) vertex
prescription: EMN (left panel) and PPV (right panel). Here we
used the dipole form factor with Ap = my,.
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Numerical Results

We have checked that

2 2
d“oEMmN (d OpPV

dqi:dgo: \ dg1:dqo;

-1
) — 1, for g+ — 0 and g — 0,

(73)
i.e. the two vertices are equivalent for both on-shell photons.



Numerical Results
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Numerical Results
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Rysunek: Results for the w7 rescattering mechanism (long-dashed
line), for the gg-fusion mechanism (solid lines), and for the PP
fusion mechanism (dotted line) together with the preliminary
ALICE data. We show maximal allowed contribution from the 77
rescattering. The results for gg-fusion contributions were
calculated for JH UGDF and for the PPV vertex [only helicity-2
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Comment on exclusive pp — ppfh(1270) process

We present the Born result (without absorptive corrections
important only when restricting to purely exclusive processes)
for the pp — ppf(1270) process proceeding via the
pomeron-pomeron fusion mechanism calculated in the
tensor-pomeron approach.

In the calculation we take the P — P — £,(1270) coupling
parameters from Lebiedowicz-Nachtmann-Szczurek 2018.



Inclusive ¢ production

X1
P

X

Rysunek: The leading-order diagram for direct ¢ meson production
in the k;-factorization approach.

spin-1, C = +1 as for inclusive J /1



Inclusive ¢ production

We calculate the dominant color-singlet gg — ¢g contribution.

In the k.-factorization the NLO differential cross section can
be written as:

do(pp — ¢gX) 1 / d?q1e I Gt T o —shal

= ML 2
dy,pdygd?pg 1d?pg. ¢ 1672352 T ™ | &8 _‘¢g‘

x 3 (Eilr + Got — PH,t — 5g,t) Fe(x1, @p, 112) Fe(x2, 43, LAY

where F, are unintegrated gluon distributions. The matrix
elements were calculated as done e.g. for J/¢g production.
The corresponding matrix element squared for the gg — ¢g is

‘Mgg—>¢g‘2 X O‘§|R(O)|2 - (75)



Inclusive ¢ production
Running coupling contants are used in the calculation.
Different combination of renormalization scales were tried.
Finally we decided to use:

al — as(ud)as(i3)as(13) | (76)
where ;i = max(q7,, m;), p3 = max(g3,, m;) and pi3 = mg,
where here m; is the ¢ transverse mass. The factorization
scale in the calculation was taken as uz = (m? + p7,)/2.

The radial wave function at zero can be estimated from the
decay of ¢ — 7/~ as is usually done for J/1)(cc), see e.g.
Mangoni et al.

aQ@? 16 a

Sy, (021 - == 77
Va0 (1-F%) o
where Qs is fractional charge of the s quark. Then
(¢ — /+/_) /\/lé
16T Qe @2 1 — 16a./(37)

M(¢— IT17) =167

W,(0)f = - (78)



Inclusive ¢ production,

-

results
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Inclusive ¢ production, results

For each considered case the result of calculation is below the
experimental data.

This suggests that the gluon-gluon fusion is not the dominant
production mechanism of ¢ meson production.

The fragmentation mechanism was considered in the literature
and it may be the dominant mechanism of ¢ meson
production.



Inclusive 1" production

P1

Rysunek: The leading-order diagram for 1’ meson production in
the k;-factorization approach.



Inclusive 77’ production

Here the lowest-order subprocess gg — 7’ is allowed by
positive C-parity of 17’ mesons. In the k;-factorization
approach the leading-order cross section for the 1’ meson
production can be written as:

1 —

—— [ Mgugr oy PFe(x1, a3, 17 ) Fa (2, @3, 17) /45 (79)
2 g°g n g Y1t PF)Y 8 » Yo¢5s F )

SX1 X2 mf»”]/

O pp—n’ :/dyd2ptd2¢h

Above F, are unintegrated gluon distributions and M g«g«_.,»
is g*g* — 1’ (off-shell) matrix element. In the last equation:
Pt = Git + G is transverse momentum of the ' meson and
G: = G1: — Go: is auxiliary variable which is used in the
integration.



Inclusive 77’ production

Furthermore: m;,, is the so-called 1’ transverse mass and

x| = m\;g/ exp(y), xo = m\%" exp(—y). The factor ; is the
jacobian of transformation from (qi:, Go:) to (P, G:) variables.
As for ¢ production the running coupling contants are used.

Different combination of scales are tried. The best choice is:

ol — as(pf)as(113) | (80)

where u3 = max(q3,, m?) and p3 = max(q3,, m?). Above m, is
transverse mass of the 7’ meson. The factorization scale(s) for
the 7/ meson production are fixed traditionally as p2 = m?.
The g*g* — 1’ coupling has relatively simple one-term form:

Tuu(qla Q2) = Fg*g*—»’r]’(qla q2)€uuaﬁq?q2ﬂ ’ (81)
where Fgp«_,/(q1, G2) object is known as the two-gluon
transition form factor.



Inclusive 77’ production

The matrix element to be used in the k,-factorization is then:

19
M = 2T (82)
|a;[|az|
In contrast to the convention for two-photon transition form
factor the strong coupling constants are usually absorbed into

the two-gluon form factor definition.
The matrix element squared for the gg — 1’ subprocess is

|Mgg—>n"2 X Fg2*g*—>77’(q%t‘q§t) & ang*w*—m’(qft‘qgt) , (83)

2 2 2 2 2 2
where FZ. . (qi:, G5,) and F2 . (g3, g5,) are two-gluon

and two-photon transition form factors of the ' meson,
respectively.



Inclusive 77’ production

It was discussed by Kroll-Passek-Kumericki, in leading-twist
collinear approximation. Such an approach is valid for
Qf = gf, > 0 and Q3 = g5, > 0. Here we need such a
transition form factor also for Qf, Qf ~ 0. There is a simple
relation between the two-gluon and two-photon form factors
for the quark-antiquark systems 7’ meson may have also the
two-gluon component in its Fock decomposition The form
factor found there can be approximately parametrized as

Q2 F2

g gr—n'

(QF, @3) ~ 0.2£0.1 GeV (84)

where @2 = (Q? + Q2)/2. A better approach would be to use
their Egs.(5.13-5.16) with parameters given there. The result
from Kroll and Passek-Kumericki is:

2 _ fe V/nr
F(Q ,cu)—47rosz2 m A( ) - (85)




Inclusive " production
In the factorized (in @ and w) formula:

N,
AW) = Agg() + 3 Aga(®) (36)
f
where

Agalw) = /ldml(xﬁu%)l i )

(x, uz 1—-2x
A - /
ez (@) dX XX 1 — w?(1 — 2x)?

and ®; and ®, are singlet and gluon distribution functions,
respectively. Above

(88)

Q-
QR+

®; and ¢, undergo QCD evolution (Kroll-Passek-Kumericki)
which is included also in the present analysis.

(89)



F.y s,y form factor

In Babiarz et al. we have shown how to calculate the
transition form factor from the light-cone Q@ wave function
of the 7. quarkonium. Here we shall follow the same idea but
for light quark and light antiquark system. The flavour wave
function of 7 meson can be approximated as

1
/ ~

') ~ \/5(
The spatial wave function could be calculated e.g. in potential
models. The momentum wave function can be then obtained
as a Fourier transform of the spatial one. We shall not follow
this path in the present study. Instead we shall take a simple,
but reasonable, parametrization of the light-cone wave
function. In principle, each component in (90) may have
different spatial as well as momentum wave function. Here for
simplicity we shall assume one effective wave function for each
flavour component We shaII take the simple parametrization

~ -~

ul + dd + s3) . (90)



F.y s,y form factor

The light cone wave function is obtained then via the
Terentev's transformation We shall use the normalization of
the light cone wave function as:

L dz  d% -
Jy i el kI =1, (92)
Above
Oz, k) o /Mg exp (~p7/(26%)) (93)

and the so-called Terentev's prescription, relating the
rest-frame and light-cone variables, is used:

p? = % (M2, — 4m?) . (94)

Above Mg is the invariant mass of the qg system.
The parameters in the above equations: m.g (hidden in
&(z, k:)) and (3 are in principle free. Here we shall take:

Mesr = (2/3)mg + (1/3)ms , (95)



F,.

A*_9n/forn1factor
I-faving fixed light-cone wave function one can calculate
electromagnetic v*v* — 7’ transition form factor as:

1 dzd?k
F(vaQ§)=—%(eﬁ+e§+e§) Nedmegr - /mw(ak)

{ 1-=z " z m]g
(k—(1—2)a,)2+z(1— 2)q + m?,; (k+2q,)2 +2z(1—2)q3 +m2g )

The F(0,0) is known and can be calculated from the radiative

decay width (BABAR2018).

In the collinear approximation, i.e. when neglecting transverse
momenta of photons, also of quark and antiquark in the
meson wave function the formula above can be reduced to a
single integral

1

FQE. Q&) = 7

(€F +el+e&)fy

)

(Q

lﬂ{ (1—2)6(2) 29(2)
0 (1-22Qf +2(1-2)Q + miy z2Qf+z(1—z)Q§+m§ﬁ

where the so-called distribution amplitudes
#(z) o< [ d?kW(z, k) and so-called decay constant f,.



| form factor

We shall use also a simple parametrization of the transition
form factor called non-factorized monopole for brevity

/\2

Frrmereece (G2, Q) = FI(0.0) 5o gz
1 2

(98)

This two-parameter formula can be correctly normalized at Q7
= 0 and Q3 = 0 (BABAR2018). It has also correct
asymptotic dependence on Q% = (Q? + Q3)/2. This is very
similar to the approach done long ago by Brodsky and Lepage
in the case of neutral pion.

The so-called vector meson dominance model (factorized
monopole)

UMy Qi my + @
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» form factor

Rysunek: The assumed mechanisms of the v*y* — n/ (left) and
g*g* — 1’ (right) couplings.



F

g*g*—n

» form factor

The two-gluon transition form factor is closely related to
two-photon transition form factor provided the meson is of the
quark-antiquark type. Then replacing virtual photons by
virtual gluons, the electromagnetic coupling constants by the
strong coupling constants, correcting by fractional charges of
quarks in the electromagnetic case and by color factors being
consistent with the unintegrated gluon distributions:

P (@ B = ey (@, P s (100
Above g2 must be taken provided it is included in the
definition of F,«.«_,, transition form factor. Usually it is not.
The relation (100) assumes simplified structure of the meson
(' in our case). Assuming such a relation for 1. meson leads
to a fairly good agreement of the transverse momentum

distribution of 7. produced in proton-proton collisions with the
LHCb data (Babiarz et al.).



Distribution amplitudes from Kroll and
Passek-Kumericki
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F.y s,y form factor
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Rysunek: Fyx«_y(0,0) as a function of 3 and meg.



F.y s,y form factor
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Rysunek: @?F(Q?) as a function of one photon virtuality. We
show results for meg = 0.4 GeV and for different values of 5 = 0.4,
0.5, 0.6 GeV (from bottom to top). For comparison we show
experimental data from CLEO, L3, BABAR.



| form factor

Rysunek: wa*_m/(Qf, Q22) obtained with the light-cone wave
function for mes = 0.4 GeV and 3 = 0.5 GeV (left panel) and the
leading-twist result (Kroll-Passek-Kumericki) (right panel).



F§* » form factor

it/

In order to better visualize our result we will show also the
ratio:

RUQE, @) = FIC(QE, GR)/F (G}, Q) (102)



F.y s,y form factor

FF/monopole
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Rysunek: R(Q?, Q3) (see Eq.(102)) with the y*y* — 7’ form
factor calculated with 7’ light-cone wave function (left panel). In
this calculation mesr = 0.4 GeV and 3 = 0.5 GeV is used for
example. In the right panel we show similar ratio obtained from
Eq.(97) with asymptotic distribution amplitude.
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n' production

do/dqy dqy (nb/Ce\/z)

Rysunek: Two-dimensional map in (gi1¢, go¢) for the full range of 7/

transverse momentum. Here /s = 200 GeV and the KMR UGDF



n' production
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Rysunek: Two-dimensional map in (qi¢, ga¢) for two different
ranges of 1’ transverse momentum:

4 GeV < pr < 6 GeV (left panel) and 9 GeV < p; < 11 GeV (right
panel).

Here /s = 200 GeV and the KMR UGDF was used.



n' production
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Rysunek: Two-dimensional map in (qft, q%t) for 4.5 GeV < p; <
5.5 GeV (left panel) and 9.5 GeV < p; < 10.5 GeV (right panel).
Here /s = 200 GeV. In this caluculation the KMR UGDF was
used and the light-cone wave function with § = 0.5 GeV.



n' production
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Rysunek: Distribution in Q2,, = Q? for the two distinct cases:

p: =5 £ 0.5 GeV (solid line) and
p; = 10 + 0.5 GeV (dashed line).



n' production

> 1 — R A S > T
O —e— PHENIX ] v & PHENIX
'g 102 @ et 4 g . /S = 200 GeV
— s —-LCWF E —LT
UJ.O 7 ... LT KPK 3 _é\l —-LTgg
Q"dlo" — nf mon E Q-Hl ’ LT ggbar
e o
~ S N\ % e i =
—10%F N\ . T E 1
ESF N\ % E c
blo'a;— - \61
o°F | =
a0 N
@10 g LJ . E E_‘I L] .
N 107k (] ] N ¢
107 = 1
= . = N
— 400 Lol b SN e — N
0 2 4 6 8 10 12 14 10 12
p, (GeV) p, (GeV)

Rysunek: Invariant cross section as a function of meson transverse
momentum. Here /s = 200 GeV and the KMR UGDF was used in
the calculation. In the left panel results for the nonfactorized
monopole. LCWF with 8 = 0.5 GeV. and simple LT



n' production
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Rysunek: Invariant cross section as a function of meson transverse
momentum in the approach with distribution amplitudes and
different initial ®,.,. Here v/s = 200 GeV and the KMR UGDF was



n' production
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Rysunek: Number of 7’ mesons per event as a function of meson
transverse momentum. Here /s = 8 TeV and the KMR UGDF
was used in the calculation. The result of the

is shown as “data points” for comparison.



Conclusions

» Production of several isoscalar mesons is not well
understood.

» The gluon-gluon fusion has been discussed as a
potentially important mechanism.

» It seems dominant mechanism for pseudoscalar quarkonia,
such as 7.
It almost fully explains the LHCb experimental data.

» For 15(980) and £(1270) it is probably sizeable
mechanism but cannot explain experimental data,
especially at low transverse momenta.

» There a coalescence (color evaporation) or FSI pion-pion
rescattering models may be alternative solutions.



Conclusions

» In analogy to J/v production we have considered
g g* — ¢g partonic process as potential mechanism of
the C = 41 meson production. The first calulation
suggests another mechanism. Parton fragmentation is a
candidate.

» We have considered also 1’ meson production via
gluon-gluon fusion. Different explicit approaches to
modelling of the g*g* — 1’ coupling have been discussed.
The gluon-gluon component in the wave fuction of 7’ may
play a role. The data from LHC would be very useful.

» Combining different mechanisms, including gluon-gluon
fusion, may be necessary in future. May be a difficult
task.



