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Introduction

◮ The mechanism of meson production in proton-proton
collisions is not fully undersood. The string-model is an
option considered e.g. in Phythia. But not all meson
production can be explained via string fragmentation.

◮ The gluon-gluon fusion for ηc and χc quarkonium
production was shown recently to be the dominant
mechanism [1,2].

◮ In contrast the mechanism of light meson production is
not known. Is there gluon-gluon fusion important effect ?
Recently we have considered production of f0(980)
(scalar), f2(1270) (tensor) and shown that gluon-gluon
fusion is important contribution but not sufficient to
describe ALICE data.

◮ Very recently we considered production of φ and η′

mesons. Especially production of η′ is very interesting.
◮ Here we review our recent works.
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Introduction



Description of the mechanism γ∗γ∗ → ηc(1S , 2S)
Babiarz, Goncalves, Pasechnik, Schäfer and Szczurek,
Phys. Rev. D100, 054018 (2019).
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Nonrelativistic quarkonium wave functions
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Radial momentum-space wave function for different potentials.
Radial spatial wave function are obtained by solving the Schrödinger
equation.

J. Cepila, J. Nemchik, M. Krelina and R. Pasechnik, arXiv:1901.02664 [hep-ph].
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Light-front wave functions
We treat the ηc as a bound state of a charm quark and
antiquark, assuming that the dominant contribution comes
from the cc̄ component in the Fock-state expansion:

|ηc ; P+, P〉 =

∑

i,j,λ,λ̄

δi
j

√

Nc

∫

dzd2k

z(1− z)16π3
Ψλλ̄(z, k)|ciλ(zP+, pc )c̄

j

λ̄
((1− z)P+, p c̄ )〉 + . . .

(1)

Here the c-quark and c̄-antiquark carry a fraction z and 1− z

respectively of the ηc ’s plus-momentum. The light-front
helicites of quark and antiquark are denoted by λ, λ̄, and take
values ±1. The transverse momenta of quark and antiquark
are

pc = k + zP , p c̄ = −k + (1− z)P . (2)

The light-cone representation is obtained by Terentev’s
prescription valid for weakly bound systems.



Light-front wave functions
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Normalized transition form factor F̃ (Q2, 0)
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Transition form factor F (Q2
1 ,Q
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γ∗γ∗ → ηc(1S , 2S)
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Asymptotic behaviour of Q2F (Q2, 0)

The rate of approaching of Q2F (Q2) to its asymptotic value predicted by
Brodsky and Lepage
G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).
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)2 (GeV 2Q
0 10 20 30 40 50

,0
) 

(G
eV

)
2

 F
(Q

2
Q

0

0.2

0.4

0.6

0.8

1

1.2

oscillator logarithmic 
power-like Cornell
Buchmuller-Tye

(1S)
c

η

)2 (GeV 2Q
0 10 20 30 40 50

,0
) 

(G
eV

)
2

 F
(Q

2
Q

0

0.2

0.4

0.6

0.8

1

1.2

oscillator logarithmic
power-like Cornell
Buchmuller-Tye

(2S)
c

η

Q2F (Q2, 0) as a function of photon virtuality Q2. The horizontal lines
8
3 fηc

are shown for reference.



Inclusive production of ηc quarkonia in

proton-proton collisions
The diagram below illustrates the situation adequate for the
kT -factorization calculations used in the present paper.

ηc(1S, 2S)

p

p

Rysunek: Generic diagram for the inclusive process of ηc(1S) or
ηc(2S) production in pp scattering via two gluons fusion.

I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek,
arXiv:1911.03403



kt-factorization approach
The inclusive cross section for ηc-production via the 2→ 1
gluon-gluon fusion mode is obtained from

dσ =

∫

dx1
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The unintegrated gluon distributions are normalized such,
that in the DGLAP-limit

F(x , q2) =
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. (4)

Let us denote the four-momentum of the ηc by P. It can be
parametrized as:
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kt-factorization approach
The phase-space element is

dΦ(2→ 1) = (2π)4δ(4)(q1 + q2 − P)
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kt-factorization approach
We therefore obtain for the inclusive cross section
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where the momentum fractions x1,2 of gluons are
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The off-shell color singlet matrix element is written in terms of
the Feynman amplitude as (we restore the color-indices):
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kt-factorization approach
The CS matrix element squared averaged over color is
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kt-factorization approach
Then, the averaged matrix element squared becomes
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This leads to our final result:
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Normalization of the g∗g∗ηc(1S , 2S) form factors
From the proportionality of the g∗g∗ηc and γ∗γ∗ηc vertices to
the leading order (LO), we obtain, that at LO:

ΓLO(ηc → gg) =
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where the LO γγ width is related to the transition form factor
for vanishing virtualities through
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Unintegrated gluon distributions

We use a few different UGDs which are available from the literature, e.g. from the

TMDLib package (Hautmann et al.) or the CASCADE code (Jung et al.).

1. Firstly we use a glue constructed according to the prescription initiated in
(Kimber et al.) and later updated in (Martin et al.), which we label below as
“KMR”. It uses as an input the collinear gluon distribution from Harland-Lang
et al.

2. Secondly, we employ two UGDs obtained by Kutak. There are two versions of
this UGD. Both introduce a hard scale dependence via a Sudakov form factor
into solutions of a small-x evolution equation. The first version uses the solution
of a linear, BFKL evolution with a resummation of subleading terms and is
denoted by ”Kutak (linear)”. The second UGD, denoted as “Kutak (nonlinear)”
uses instead a nonlinear evolution equation of Balitsky-Kovchegov type. Both
of the Kutak’s UGDs can be applied only in the small-x regime, x < 0.01.

3. The third type of UGD has been obtained by Hautmann and Jung from a
description of precise HERA data on deep inelastic structure function by a
solution of the CCFM evolution equations. We use “Set 2”.



KMR UGDF

For the case of the KMR UGD, it has recently been shown
(Maciula, Szczurek), that it includes effectively higher order
corrections of the collinear factorization approach. In this
sense should give, within our approach, a result similar to that
found recently in the NLO approach (Feng, Lansberg et al.) at
not too small transverse momenta.

In our approach we can go to very small transverse momenta
close to pT = 0.



Results for the LHC
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Results for the LHC
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Results for the LHC
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UGDs are quite different but ...



Results for the LHC
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Results for the LHC, ηc(2S)
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F (0, 0) extracted from Γηc (2S) at NLO accuracy



Results for the LHC, different form factors
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quarkonium wave function and one common normalization of
|F (0, 0)|.



Results for the LHC
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factors obtained from different potential models of quarkonium.
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Results for the LHC, integrated cross section
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potential (P-law).

Somewhat faster grow for experimental data.



Results for the LHC, effect of form factor
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Is the form factor included in collinear calculations ?
Not always.



Results for the ATLAS/CMS kinematics
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Not so small x1, x2 as for LHCb.



Results for the ATLAS/CMS kinematics
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f0(980) production in γ∗γ∗ fusion
In the formalism presented by in Pascalutsa et al. the covariant
matrix element for the γ∗γ∗ → f0(980) process is written as:

Mµν = 4παem

ν

mf0

[

−Rµν(q1, q2) FTT (Q2
1 ,Q

2
2)

+
ν

X

(

q
µ
1

+
Q2

1

ν
q
µ
2

)(

qν2 +
Q2

2

ν
qν1

)

FLL(Q2
1 ,Q

2
2)

]

, (24)

where ν = (q1 · q2), X = ν2 − q2
1q2

2 , and

Rµν(q1, q2) = −gµν +
1

X

[

ν
(

q
µ
1

qν2 + q
µ
2

qν1

)

− q2
1q
µ
2

qν2 − q2
2q
µ
1

qν1

]

. (25)

Here q1 and q2 denote the momenta of the photons,
Q2

1 = −q2
1 , Q2

2 = −q2
2 , and mf0 is mass of the f0(980) meson.

In Eq. (83), the scalar meson structure information in encoded
in the form factors FTT and FLL which are functions of the
virtualities of both photons. FTT or FLL correspond to the
situation where either both photons are transverse or
longitudinal, respectively. By definition the form factors are
dimensionless.



f0(980) production in γ∗γ∗ fusion
The two-photon decay width of the f0(980) meson can be
calculated as:

Γ(f0(980)→ γγ) =
πα2

em

4
mf0|FTT (0, 0)|2 . (26)

Only FTT form factor can be constraint from (26). The
radiative decay width is relatively well known. Using the
average decay width

Γ(f0(980)→ γγ) = 0.31 keV . (27)

and mf0 = 980 MeV we obtain from (26) |FTT (0, 0)| = 0.087.
Then the transverse form factor is parametrized as:

FTT (Q2
1 ,Q

2
2)

FTT (0, 0)
=

(

Λ2
M

Q2
1

+ Q2
2

+ Λ2
M

)

, (28)

FTT (Q2
1
,Q2

2
)

FTT (0, 0)
=

(

Λ2
D

Q2
1

+ Q2
2

+ Λ2
D

)2

, (29)

where cut-off parameters ΛM or ΛD are expected to be of
order of 1 GeV. Both monopole (98) and dipole (59)
parametrizations of F will be used in the following. In the



f0(980) production in γ∗γ∗ fusion

The FLL form factor is rather unknown but via construction do
not enter the formula for the radiative decay width (26) as

FLL(0,Q
2
2) = FLL(Q

2
1 , 0) = 0 . (30)

We propose to use the following parametrization for the FLL

form factor:

FLL(Q
2
1 ,Q

2
2) = RLL/TT

Q2
1

M2
0 + Q2

1

Q2
2

M2
0 + Q2

2

FTT (Q2
1 ,Q

2
2) . (31)

Such a form is consistent with a microscopic calculation for
γ∗γ∗ → χc0 (Babiarz et al.) using quarkonium wave functions
obtained from the potential models. In our present case we
expect RLL/TT ≈ ±0.5 and M0 ∼ mf0 .



Color singlet g∗g∗ → f0(980) fusion

f0(980)

p

p

Rysunek: General diagram for inclusive f0(980) production via
gluon-gluon fusion in proton-proton collisions.



Color singlet g∗g∗ → f0(980) fusion

The differential cross section for inclusive f0(980) meson
production via the g∗g∗ → f0(980) fusion in the
kt-factorization approach can be written as:

dσ

dyd2p
=

∫

d2q1

πq2
1

F(x1, q
2
1)

∫

d2q2

πq2
2

F(x2, q
2
2) δ

(2)(q1 + q2 − p)
π

(x1x2s)2
|M|2 . (32)

Here q1, q2 and p denote the transverse momenta of the
gluons and the f0(980) meson. Mg∗g∗→f0 is the off-shell
matrix element for the hard subprocess and Fg are the gluon
unintegrated distribution functions (UGDFs) for both colliding
protons. The UGDFs depend on gluon longitudinal momentum
fractions x1,2 = mT exp(±y)/

√
s and q2

1, q
2
2 entering the hard

process.



Color singlet g∗g∗ → f0(980) fusion

The off-shell matrix element can be written as (we restore the
color indices a and b)

Mab =
q
µ
1t

qν
2t

|q1||q2|
Mab

µν =
q1+q2−
|q1||q2|

n+µn−νMab
µν =

x1x2s

2|q1||q2|
n+µn−νMab

µν (33)

with the lightcone components of gluon momenta

q1+ = x1

√

s/2, q2− = x2

√

s/2.

The g∗g∗ → f0(980) coupling entering in the matrix element
squared can be obtained from that for γ∗γ∗ → f0(980)
coupling by the following replacement:

α2
em → α2

s

1

4Nc(N2
c − 1)

1

(< e2
q >)2

. (34)



Color singlet g∗g∗ → f0(980) fusion

(< e2
q >) above strongly depends on the flavour structure of

the wave function. In the following we consider a few
examples of quark-flavour composition:

• f0(980)〉 = 1√
2

(

uū〉+ dd̄〉
)

, (35)

• f0(980)〉 = ss̄〉 , (36)

• f0(980)〉 = 1√
2

(

[su][s̄ ū]〉+ [sd ][s̄ d̄ ]〉
)

. (37)



Color singlet g∗g∗ → f0(980) fusion

In realistic calculations the running of strong coupling
constants must be included. In our numerical calculations
presented below, we set the factorization scale to µ2

F = m2
T ,

and the renormalization scale is taken in the form:

α2
s → αs(max {m2

T , q
2
1})αs(max {m2

T , q
2
2}) . (38)



Color evaporation model

f0(980)

p

p

soft

Rysunek: General diagram for inclusive f0(980) production in
proton-proton collisions in the color evaporation approach.



Color evaporation

dσf0
(pf0

)

d3pf0

= PCEM

∫ mf0
+∆M

mf0
−∆M

d3Pqq̄ dMqq̄
dσqq̄(Mqq̄ ,Pqq̄)

dMqq̄ d3Pqq̄

δ3(~pf0
−

mf0

Mqq̄

~Pqq̄) , (39)

where PCEM is the probability of the qq̄ → f0(980) transition

which is fitted to the experimental data, Mqq̄ and Pqq̄ = |~Pqq̄|
are the invariant mass and momentum of the qq̄ system. Here
we take ∆M = 100 MeV.



Color evaporation

uPDF
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Rysunek: Typical kt -factorization process with the production of
uū and dd̄ pairs that are intermediate state for color evaporation.



Color evaporation
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Rysunek: An alternative collinear approach with the production of
uū and dd̄ pairs associated with soft gluon emission that are
intermediate state for color evaporation.



Numerical results

To convert to the number of f0(980) mesons per event, as was
presented in Lee (PhD thesis), we use the following relation:

dN

dpt

=
1

σinel

dσ

dpt

. (40)

The inelastic cross section for
√

s = 7 TeV was measured at
the LHC and is:

σinel = 73.15± 1.26 (syst.) mb , (41)

σinel = 71.34± 0.36 (stat.)± 0.83 (syst.) mb , (42)

as obtained by the TOTEM and ATLAS collaborations,
respectively. In our calculations we take σinel = 72.5 mb.



Numerical results
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Rysunek: The f0(980) meson transverse momentum distributions
at
√

s = 7 TeV and |y| < 0.5. The preliminary ALICE data from
[?] are shown for comparison. For the g∗g∗ → f0(980) contribution
two different UGDFs are used: the JH (left panel) and KMR (right
panel). Here, the ss̄ flavour wave function of f0(980) is taken into
account. Shown are TT and LL components in the amplitude and
their coherent sum (total) for the monopole (green solid lines) and



Results, color evaporation
In the present study the cross sections for uū and dd̄ or
alternatively ss̄ minĳet pair production are calculated in the
kt-factorization approach or in the collinear approach. In both
cases the calculations are done with the help of the KaTie

Monte Carlo code (van Hameren). Considering production of
(soft) minĳets a real problem is a regularization of the cross
section at small transverse momenta. Here we follow the
methods adopted for collinear approach in PYTHIA and
multiply the calculated cross section by a somewhat arbitrary
suppression factor:

Fsup(pt) =
p4

t

((p0
t )

2 + p2
t )

2
, (43)

where p0
t is a free parameter of the model. In the following

calculations we take different values of p0
t , in order to show

sensitivity of the results to the choice of this parameter. The
parameter goes also into the argument of the strong coupling
constant 2 p0 2 p2 .



Results, color evaporation

Technically, in the numerical calculations here, the suppression
factor includes the fact that the transverse momenta of
outgoing minĳets are not balanced and it takes the following
form:

F (2)
sup(p

2
1t , p

2
2t) =

p2
1t

(p0
t )

2 + p2
1t

× p2
2t

(p0
t )

2 + p2
2t

. (44)

The KaTie Monte Carlo generator does not have any problems
with the generation of the events in the case of the 2→ 2
processes, even if there is no additional cut-off on the outgoing
minĳets transverse momenta (thus low-pt cuts are not
necessary here). The generated events for massless
quarks/antiquarks are weighted by the suppression factor (44).



Results, color evaporation, kt-factorization
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Rysunek: The transverse momentum distribution of f0(980) for
the KMR-CT14lo UPDFs for different p0

t in (44) for the gg-fusion
(left) and qq̄ (right) mechanisms. The calculations were done for
Mqq̄ ∈ (0.88, 1.08) GeV.



Results, color evaporation, kt-factorization
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Results, color evaporation model, kt-factorization
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quark/antiquark masses specified in the figure.



Results, color evaporation, kt-factorization
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Rysunek: The transverse momentum distributions of f0(980) for
the KMR UPDFs for two masses of produced quark/antiquark:
mq = 0.1 GeV (dotted) and mq = 0.3 GeV (dashed). Calculations
were done in the qq̄ invariant mass region Mqq̄ ∈ (0.88, 1.08) GeV.



2 → 3 partonic processes
In the calculations we take into account the 2→ 3 partonic
processes at the tree-level. So here the qq̄-pair is associated
with extra gluon or quark which comes from the hard matrix
elements. Here we include all the partonic subprocesses with
gg -, qg - and qq̄-types of initial states. The full list included is:

◮ gg-fusion:
gg → guū, gg → gdd̄

◮ qg-interaction:
gu → uuū, gd → duū, gs → suū, gū → ūuū, gd̄ → d̄uū, gs̄ → s̄uū,
ug → uuū, dg → duū, sg → suū, ūg → ūuū, d̄g → d̄uū, s̄g → s̄uū,
gu → udd̄ , gd → ddd̄ , gs → sdd̄ , gū → ūdd̄ , gd̄ → d̄dd̄ , gs̄ → s̄dd̄ ,
ug → udd̄ , dg → ddd̄ , sg → sdd̄ , ūg → ūdd̄ , d̄g → d̄dd̄, s̄g → s̄dd̄

◮ qq̄-annihilation:
uū → guū, dd̄ → guū, ss̄ → guū, ūu → guū, d̄d → guū, s̄s → guū,
dd̄ → gdd̄ , uū → gdd̄ , ss̄ → gdd̄ , d̄d → gdd̄ , ūu → gdd̄ , s̄s → gdd̄

In the case of the collinear calculations of the 2→ 3 processes
the suppression factor takes the following form:

F (3)
sup(p

2
1t , p

2
2t , p

2
3t) =

p2
1t

(p0
t )

2 + p2
1t

× p2
2t

(p0
t )

2 + p2
2t

× p2
3t

(p0
t )

2 + p2
3t

.(45)



Collinear approach, 2→ 3 partonic processes
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Rysunek: The f0(980) meson transverse momentum distributions
at
√

s = 7 TeV and |y| < 0.5, calculated in the color evaporation
model based on the collinear approach, using the CT14lo (left) and
MMHT2014lo (right) PDFs together with the preliminary ALICE
data (Lee thesis). The calculations were done in quark-antiquark
invariant mass region Mqq̄ ∈ (0.88, 1.08) GeV. Here the gg , qg and
qq̄ induced interaction mechanisms are shown separately. Shown
are results for the light qq̄ scenario (35) for the flavour wave
function of f0(980). In this calculations we used p0

t = 0.01 GeV in



Introduction to f2 production

f2(1270)

p

p

q1

q2



Ewerz-Maniatis-Nachtmann (EMN) vertex

Γ
(f2γγ)
µνκλ (q1, q2) = 2af2γγ Γ

(0)
µνκλ(q1, q2) F (0)(Q2

1 ,Q
2
2)

−bf2γγ Γ
(2)
µνκλ(q1, q2) F (2)(Q2

1 ,Q
2
2) , (46)

with two rank-four tensor functions,

Γ
(0)

µνκλ
(q1, q2) =

[

(q1 · q2)gµν − q2µq1ν

][

q1κq2λ + q2κq1λ −
1

2
(q1 · q2)gκλ

]

, (47)

Γ
(2)

µνκλ
(q1, q2) = (q1 · q2)(gµκgνλ + gµλgνκ) + gµν (q1κq2λ + q2κq1λ)

−q1νq2λgµκ − q1νq2κgµλ − q2µq1λgνκ − q2µq1κgνλ

−[(q1 · q2)gµν − q2µq1ν ] gκλ , (48)



Ewerz-Maniatis-Nachtmann (EMN) vertex
To obtain af2γγ and bf2γγ in (46) we use the values

Γ(f2 → γγ) = (2.93± 0.40) keV ,

helicity zero contribution ≈ 9% of Γ(f2 → γγ) . (49)

Using the exp. decay rate

Γ(f2 → γγ) =
mf2

80π

(

1

6
m6

f2
|af2γγ |2 + m2

f2
|bf2γγ |2

)

, (50)

and assuming af2γγ > 0 and bf2γγ > 0, we find

af2γγ = αem × 1.17 GeV−3 , (51)

bf2γγ = αem × 2.46 GeV−1 , (52)

where αem = e2/(4π) ≃ 1/137 is the electr. coupling
constant.



Pascalutsa-Pauk-Vanderhaeghen (PPV) vertex

Poppe and Pascalutsa et al. shown that the most general
amplitude for the process γ∗(q1, λ1) + γ∗(q2, λ2)→ f2(Λ),
describing the transition from an initial state of two virtual
photons to a tensor meson f2 (JPC = 2++) with mass mf2 and
helicity Λ = ±2,±1, 0, involves five independent structures
(invariant amplitudes).



Pascalutsa-Pauk-Vanderhaeghen (PPV) vertex

In the formalism presented by Pascalutsa et al. the
γ∗γ∗ → f2(1270) vertex is parameterized as

Γ
(f2γγ)

µνκλ
(q1, q2) = 4παem

{[

Rµκ(q1, q2)Rνλ(q1, q2) +
s

8X
Rµν (q1, q2)(q1 − q2)κ (q1 − q2)λ

]

×
ν

mf2

T
(2)

(Q
2
1 ,Q

2
2 )

+Rνκ(q1, q2)(q1 − q2)λ

(

q1µ +
Q2

1

ν
q2µ

)

1

mf2

T
(1)

(Q
2
1 ,Q

2
2 )

+Rµκ(q1, q2)(q2 − q1)λ

(

q2ν +
Q2

2

ν
q1ν

)

1

mf2

T
(1)

(Q
2
2 ,Q

2
1 )

+Rµν (q1, q2)(q1 − q2)κ (q1 − q2)λ
1

mf2

T
(0,T )

(Q
2
1 ,Q

2
2)

+

(

q1µ +
Q2

1

ν
q2µ

)(

q2ν +
Q2

2

ν
q1ν

)

(q1 − q2)κ(q1 − q2)λ
1

m3
f2

T
(0,L)

(Q
2
1 ,Q

2
2 )

}

,

(53)



Pascalutsa-Pauk-Vanderhaeghen (PPV) vertex

where photons with momenta q1 and q2 have virtualities,
Q2

1 = −q2
1 and Q2

2 = −q2
2 , s = (q1 + q2)

2 = 2ν − Q2
1 −Q2

2 ,
X = ν2 − q2

1q2
2 , ν = (q1 · q2), and

Rµν(q1, q2) = −gµν+
1

X

[

ν (q1µq2ν + q2µq1ν)− q2
1q2µq2ν − q2

2q1µq1ν

]

(54)
T (Λ)(Q2

1 ,Q
2
2) are the γ∗γ∗ → f2(1270) transition form factors

for Λ f2(1270) helicity.For the case of helicity zero, there are
two form factors depending on whether both photons are
transverse (superscript T ) or longitudinal (superscript L).
We can express the transition form factors as

T (Λ)(Q2
1 ,Q

2
2) = F (Λ)(Q2

1 ,Q
2
2) T (Λ)(0, 0) . (55)

In the limit Q2
1,2 → 0 only T (0,T ) and T (2) contribute.



EMN vs PPV vertices

Comparing the two approaches at both real photons
(Q2

1 = Q2
2 = 0) and at

√
s = mf2 we found the correspondence

4παem T (0,T )(0, 0) = −af2γγ

m3
f2

2
, (56)

4παem T (2)(0, 0) = −bf2γγ 2mf2 . (57)



g∗g∗ → f2(1270) form factor(s)
f2(1270) is extended, finite size object and one can expect an
additional form factor(s) F (Q2

1 ,Q
2
2) associated with the gluon

virtualities for the g∗g∗ → f2 vertex. In our work the form
factor is parametrized as:

F (Q2
1 ,Q

2
2) =

Λ2
M

Q2
1 + Q2

2 + Λ2
M

, (58)

F (Q2
1 ,Q

2
2) =

(

Λ2
D

Q2
1 + Q2

2 + Λ2
D

)2

, (59)

F (Q2
1 ,Q

2
2) =

Λ2
1

Q2
1 + Λ2

1

Λ2
1

Q2
2 + Λ2

1

, (60)

F (Q2
1 ,Q

2
2) =

Λ4
2

(Q2
1 + Λ2

2)
2

Λ4
2

(Q2
2 + Λ2

2)
2
, (61)

where Λ is a parameter whose value is expected to be close to
the resonance mass.
No form factor in earlier work by Jeon et al.



kt-factorization approach

f2(1270)

p

p

q1

q2

Rysunek: General diagram for inclusive f2(1270) production via
gluon-gluon fusion in proton-proton collisions.



kt-factorization approach
The differential cross section for inclusive f2(1270) meson
production via the g∗g∗ → f2(1270) fusion in the
kt-factorization approach can be written as:

dσ

dyd2p
=

∫

d2q1

πq2
1

Fg (x1,q
2
1)

∫

d2q2

πq2
2

Fg (x2,q
2
2) δ

(2)(q1 + q2 − p)

π

(x1x2s)2
|Mg∗g∗→f2|2 . (62)

Here q1, q2 and p - the transverse momenta of the gluons and
the f2(1270) meson. The f2 meson is on-shell and p2 = m2

f2
.

Mg∗g∗→f2 is the off-shell matrix element for the hard subprocess
and Fg are the unintegrated gluon distribution functions (UGDFs).
The UGDFs depend on gluon longitudinal momentum fractions
x1,2 = mT exp(±y)/

√
s and q2

1,q
2
2 entering the hard process. In

principle, they can depend also on factorization scales µ2
F ,i ,

i = 1, 2. We assume µ2
F ,1 = µ2

F ,2 = m2
T . Here mT is transverse

mass of the f2(1270) meson; mT =
√

p2 + m2
f2

. The δ(2) function

above can be eliminated by introducing q1 + q2 and q1 − q2



kt-factorization approach

The off-shell matrix element can be written as (we restore the
color-indices a and b)

Mab =
q
µ
1tq

ν
2t

|q1||q2|
Mab

µν =
q1+q2−
|q1||q2|

n+µn−νMab
µν =

x1x2s

2|q1||q2|
n+µn−νMab

µν (63)

with the lightcone components of gluon momenta

q1+ = x1

√

s/2, q2− = x2

√

s/2. Here the matrix-element reads

Mµν = Γ
(f2γγ)
µνκλ (q1t , q2t) (ǫ(f2)κλ(p))∗ , (64)

where ǫ(f2) is the polarisation tensor for the f2(1270) meson.



kt-factorization approach, energy-momentum

tensor

In the kt-factorization approach in Jeon et al. the matrix
element squared was written as:

|Mg∗g∗→f2
|2 =

1

4

∑

λ1,λ2,λf2

|Mg∗g∗→f2
|2

=
1

4

1

(N2
c − 1)2

∑

a,b

q1t µ1

q1t

q2t ν1

q2t

V
α1β1µ1ν1
ab

(q1, q2) P
(2)

α1β1,α2β2
(p)

q1t µ2

q1t

q2t ν2

q2t

(

V
α2β2µ2ν2
ab

(q1, q2)
)

∗

=
1

4

1

(N2
c − 1)κ2

P
(2)

α1β1,α2β2
(p)H

α1β1
⊥

(q1t , q2t )H
α2β2
⊥

(q1t , q2t )

(

x1x2s

2q1t q2t

)2

, (65)

where λ1, λ2, λf2
are the helicities of the gluons and f2 meson, a, b are color indices, Nc is the number of colors,

V
αβµν

ab
is the gg → f2 vertex. (see Jeon et al.) and κ ≈ O(0.1 GeV) is to be fixed by experiment.

No form factor(s), no αs .



kt-factorization approach
The g∗g∗ → f2(1270) coupling entering in the matrix element
squared can be obtained from that for γ∗γ∗ → f2(1270)
coupling as:

α2
em → α2

s

1

4Nc(N2
c − 1)

1

(< e2
q >)2

. (66)

Here (< e2
q >)2 = 25/162 for the 1√

2

(

uū + dd̄
)

flavour
structure.
In realistic calculations the running of strong coupling
constants must be included. In our numerical calculations
presented below the renormalization scale is taken in the form:

α2
s → αs(max {m2

T , q
2
1})αs(max {m2

T , q
2
2}) . (67)

The Shirkov-Solovtsov prescription is used to extrapolate down
to small renormalization scales. The strong coupling constant
was not included by Jeon et al.



A simple ππ final-state rescattering model

f2(1270)

p p

π
π

Rysunek: General diagram for the ππ final-state rescattering
leading to f2(1270) production in proton-proton collisions.

Both π+π− and π0π0 rescatterings may lead to the production
of the f2(1270) meson.



A simple ππ final-state rescattering model

The spectrum of pions will be not calculated here but instead
we will use a Lévy parametrization of the inclusive π0 cross
section for

√
s = 7 TeV. At the ALICE energies and

midrapidities we assume the following relation:

dσπ
+

dydpt

(y, pt) =
dσπ

−

dydpt

(y, pt) =
dσπ

0

dydpt

(y, pt) (68)

to be valid.
Our approach here is similar in spirit to color evaporation
approach considered, e.g. for J/ψ.



A simple ππ final-state rescattering model

We write the number of produced f2(1270) per event as

N =
∫

dy1dp1t

∫

dy2dp2t

∫

dφ1

2π

dφ2

2π

dNπ

dy1dp1t

dNπ

dy2dp2t

Pππ→f2 ,

(69)
where dNπ/(dydpt) is number of pions per interval of rapidity
and transverse momentum. Here we use the Tsallis
parametrization of π0 at

√
s = 7 TeV (Abelev et al.). Above

Pππ→f2 parametrizes probability of the π+π− and π0π0

formation of f2(1270) as well as probability of its survival in a
dense hadronic system. It will be treated here as a free
parameter adjusted to the f2(1270) data from the Lee thesis.
The distribution dNπ/(dydpt) is obtained then by calculating
y and pt of the f2(1270) meson and binning in these variables.
The effect of hadronic rescattering is also discussed recently by
Utheim and Sjöstrand.



Numerical Results

To convert to the number of f2(1270) mesons per event
(ALICE data) we use the following relation:

dN

dpt

=
1

σinel

dσ

dpt

. (70)

The inelastic cross section for
√

s = 7 TeV was measured at
the LHC and is:

σinel = 73.15± 1.26 (syst.) mb , (71)

σinel = 71.34± 0.36 (stat.)± 0.83 (syst.) mb , (72)

as obtained by the TOTEM (Antchev et al.) and ATLAS (Aad
et al.) collaborations, respectively. We take σinel = 72.5 mb.



Numerical Results
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Rysunek: The f2(1270) meson transverse momentum distributions
at
√

s = 7 TeV and |y| < 0.5. The preliminary ALICE data from
Lee thesis. The results for the EMN (left panel) and PPV (right
panel) g∗g∗ → f2(1270) vertex for different F (Q2

1 ,Q
2
2) ff are

shown. In this calculation the JH UGDF was used.



Numerical Results
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Rysunek: The f2(1270) meson transverse momentum distributions
at
√

s = 7 TeV and |y| < 0.5 together with the preliminary ALICE
data. Shown are the results calculated in the two approaches,
EMN (left panel) and PPV (right panel) vertices, and the helicity-0
and -2 components separately and their coherent sum (total). Here
we used dipole form factor parametrization with ΛD = mf2. The
dotted line corresponds to the contribution for the
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Rysunek: The f2(1270) meson transverse momentum distributions
at
√

s = 7 TeV and |y| < 0.5 together with the preliminary ALICE
data from the Lee thesis. In the left panel two different UGDFs,
JH (solid lines) and KMR (dashed lines), are shown. In the right
panels the dependence on the Gaussian smearing parameter σ0 for
GJR08VFNS(LO) GDF. Here the EMN vertex and the dipole form
factor with ΛD = mf2 were used.



Numerical Results
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Rysunek: Two-dimensional distributions in gluon transverse
momenta for the JH UGDF and for two g∗g∗f2(1270) vertex
prescription: EMN (left panel) and PPV (right panel). Here we
used the dipole form factor with ΛD = mf2.



Numerical Results

We have checked that

d2σEMN

dq1tdq2t

(

d2σPPV

dq1tdq2t

)−1

→ 1 , for q1t → 0 and q2t → 0 ,

(73)
i.e. the two vertices are equivalent for both on-shell photons.



Numerical Results
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2) with ΛD = mf2 are shown. JH UGDF was used.



Numerical Results
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and helicity-(0, T) terms] and for two form factor functions (top



Comment on exclusive pp → ppf2(1270) process

We present the Born result (without absorptive corrections
important only when restricting to purely exclusive processes)
for the pp → ppf2(1270) process proceeding via the
pomeron-pomeron fusion mechanism calculated in the
tensor-pomeron approach.
In the calculation we take the P− P− f2(1270) coupling
parameters from Lebiedowicz-Nachtmann-Szczurek 2018.



Inclusive φ production

p1

p2

X1

X2

φ

g

Rysunek: The leading-order diagram for direct φ meson production
in the kt -factorization approach.

spin-1, C = +1 as for inclusive J/ψ



Inclusive φ production

We calculate the dominant color-singlet gg → φg contribution.
In the kt-factorization the NLO differential cross section can
be written as:

dσ(pp → φgX)

dyJ/ψdyg d2pφ,td2pg,t
=

1

16π2 ŝ2

∫

d2q1t

π

d2q2t

π
|Moff−shell

g∗g∗→φg
|2

× δ2
(

~q1t + ~q2t − ~pH,t − ~pg,t

)

Fg (x1, q
2
1t , µ

2)Fg (x2, q
2
2t , µ

2) ,(74)

where Fg are unintegrated gluon distributions. The matrix
elements were calculated as done e.g. for J/ψg production.
The corresponding matrix element squared for the gg → φg is

|Mgg→φg |2 ∝ α3
s |R(0)|2 . (75)



Inclusive φ production
Running coupling contants are used in the calculation.
Different combination of renormalization scales were tried.
Finally we decided to use:

α3
s → αs(µ

2
1)αs(µ

2
2)αs(µ

2
3) , (76)

where µ2
1 = max(q2

1t ,m
2
t ), µ

2
2 = max(q2

2t ,m
2
t ) and µ2

3 = m2
t ,

where here mt is the φ transverse mass. The factorization
scale in the calculation was taken as µ2

F = (m2
t + p2

t,g)/2.
The radial wave function at zero can be estimated from the
decay of φ→ l+l− as is usually done for J/ψ(cc̄), see e.g.
Mangoni et al.

Γ(φ→ l+l−) = 16π
αQ2

s

M2
φ

|Ψφ(0)|2
(

1− 16

3

αs

π

)

, (77)

where Qs is fractional charge of the s quark. Then

|Ψφ(0)|2 =
Γ(φ→ l+l−)

16παemQ2
s

M2
φ

1− 16αs/(3π)
. (78)



Inclusive φ production, results
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Inclusive φ production, results

For each considered case the result of calculation is below the
experimental data.
This suggests that the gluon-gluon fusion is not the dominant
production mechanism of φ meson production.
The fragmentation mechanism was considered in the literature
and it may be the dominant mechanism of φ meson
production.



Inclusive η′ production

p1

p2

X1

X2

η′

Rysunek: The leading-order diagram for η′ meson production in
the kt -factorization approach.



Inclusive η′ production

Here the lowest-order subprocess gg → η′ is allowed by
positive C -parity of η′ mesons. In the kt-factorization
approach the leading-order cross section for the η′ meson
production can be written as:

σpp→η′ =

∫

dyd2ptd2qt
1

sx1x2

1

m2
t,η′

|Mg∗g∗→η′ |2Fg (x1, q
2
1t , µ

2
F )Fg (x2, q

2
2t , µ

2
F )/4 , (79)

Above Fg are unintegrated gluon distributions andMg∗g∗→η′
is g∗g∗ → η′ (off-shell) matrix element. In the last equation:
~pt = ~q1t + ~q2t is transverse momentum of the η′ meson and
~qt = ~q1t − ~q2t is auxiliary variable which is used in the
integration.



Inclusive η′ production
Furthermore: mt,η′ is the so-called η′ transverse mass and
x1 =

mt,η′√
s

exp(y), x2 =
mt,η′√

s
exp(−y). The factor 1

4
is the

jacobian of transformation from (~q1t , ~q2t) to (~pt , ~qt) variables.
As for φ production the running coupling contants are used.
Different combination of scales are tried. The best choice is:

α2
s → αs(µ

2
1)αs(µ

2
2) , (80)

where µ2
1 = max(q2

1t ,m
2
t ) and µ2

2 = max(q2
2t ,m

2
t ). Above mt is

transverse mass of the η′ meson. The factorization scale(s) for
the η′ meson production are fixed traditionally as µ2

F = m2
t .

The g∗g∗ → η′ coupling has relatively simple one-term form:

Tµν(q1, q2) = Fg∗g∗→η′(q1, q2)ǫµναβqα1 q
β
2 , (81)

where Fg∗g∗→η′(q1, q2) object is known as the two-gluon
transition form factor.



Inclusive η′ production

The matrix element to be used in the kt-factorization is then:

Mab =
q
µ
1,⊥qν2,⊥
|q1||q2|

Tµν . (82)

In contrast to the convention for two-photon transition form
factor the strong coupling constants are usually absorbed into
the two-gluon form factor definition.
The matrix element squared for the gg → η′ subprocess is

|Mgg→η′ |2 ∝ F 2
g∗g∗→η′(q

2
1t .q

2
2t) ∝ α2

s F 2
γ∗γ∗→η′(q

2
1t .q

2
2t) , (83)

where F 2
g∗g∗→η′(q

2
1t , q

2
2t) and F 2

γ∗γ∗→η′(q
2
1t , q

2
2t) are two-gluon

and two-photon transition form factors of the η′ meson,
respectively.



Inclusive η′ production
It was discussed by Kroll-Passek-Kumericki, in leading-twist
collinear approximation. Such an approach is valid for
Q2

1 = q2
1t ≫ 0 and Q2

2 = q2
2t ≫ 0. Here we need such a

transition form factor also for Q2
1 ,Q

2
1 ∼ 0. There is a simple

relation between the two-gluon and two-photon form factors
for the quark-antiquark systems η′ meson may have also the
two-gluon component in its Fock decomposition The form
factor found there can be approximately parametrized as

Q̄2F 2
g∗g∗→η′(Q

2
1 ,Q

2
2) ≈ 0.2± 0.1 GeV , (84)

where Q̄2 = (Q2
1 + Q2

2)/2. A better approach would be to use
their Eqs.(5.13-5.16) with parameters given there. The result
from Kroll and Passek-Kumericki is:

F (Q̄2, ω) = 4παs

fP

Q̄2

√
nf

Nc

A(ω) . (85)



Inclusive η′ production
In the factorized (in Q̄2 and ω) formula:

A(ω) = Aqq̄(ω) +
Nc

2nf

Agg (ω) , (86)

where

Aqq̄(ω) =
∫ 1

0
dx Φ1(x , µ

2
F)

1

1− ω2(1− 2x)2
, (87)

Agg (ω) =
∫ 1

0
dx

Φg(x , µ2
F )

x x̄

1− 2x

1− ω2(1− 2x)2
(88)

and Φ1 and Φg are singlet and gluon distribution functions,
respectively. Above

ω =
Q2

1 − Q2
2

Q2
1 + Q2

2

. (89)

Φ1 and Φg undergo QCD evolution (Kroll-Passek-Kumericki)
which is included also in the present analysis.



Fγ∗γ∗→η′ form factor
In Babiarz et al. we have shown how to calculate the
transition form factor from the light-cone QQ̄ wave function
of the ηc quarkonium. Here we shall follow the same idea but
for light quark and light antiquark system. The flavour wave
function of η′ meson can be approximated as

|η′〉 ≈ 1√
3
(uū + dd̄ + ss̄) . (90)

The spatial wave function could be calculated e.g. in potential
models. The momentum wave function can be then obtained
as a Fourier transform of the spatial one. We shall not follow
this path in the present study. Instead we shall take a simple,
but reasonable, parametrization of the light-cone wave
function. In principle, each component in (90) may have
different spatial as well as momentum wave function. Here for
simplicity we shall assume one effective wave function for each
flavour component. We shall take the simple parametrization
of the momentum wave function



Fγ∗γ∗→η′ form factor
The light cone wave function is obtained then via the
Terentev’s transformation We shall use the normalization of
the light cone wave function as:

∫ 1

0

dz

z(1− z)

d2k

16π3
|φ(z , kt)|2 = 1 . (92)

Above
φ(z , kt) ∝

√

Mqq̄ exp
(

−p2/(2β2)
)

(93)

and the so-called Terentev’s prescription, relating the
rest-frame and light-cone variables, is used:

p2 =
1

4

(

M2
qq̄ − 4m2

eff

)

. (94)

Above Mqq̄ is the invariant mass of the qq̄ system.
The parameters in the above equations: meff (hidden in
φ(z , kt)) and β are in principle free. Here we shall take:

meff = (2/3)mq + (1/3)ms , (95)

where m and m are constituent masses of light (u,d) and



Fγ∗γ∗→η′ form factor
Having fixed light-cone wave function one can calculate
electromagnetic γ∗γ∗ → η′ transition form factor as:

F (Q2
1 ,Q

2
2) = − 1√

3
(e2

u + e2
d + e2

s )
√

Nc 4meff ·
∫

dzd2k

z(1− z)16π3
ψ(z , k)

{

1− z

(k − (1 − z)q2)
2 + z(1− z)q2

1
+ m2

eff

+
z

(k + zq2)
2 + z(1− z)q2

1
+ m2

eff

}

.(96)

The F (0, 0) is known and can be calculated from the radiative
decay width (BABAR2018).
In the collinear approximation, i.e. when neglecting transverse
momenta of photons, also of quark and antiquark in the
meson wave function the formula above can be reduced to a
single integral

F (Q2
1 ,Q

2
2) =

1√
3
(e2

u + e2
d + e2

s )fη′

·
∫ 1

0

dz

{

(1 − z)φ(z)

(1− z)2Q2
1

+ z(1− z)Q2
2

+ m2
eff

+
zφ(z)

z2Q2
1

+ z(1− z)Q2
2

+ m2
eff

}

(97)

where the so-called distribution amplitudes
φ(z) ∝ ∫ d2kΨ(z , k) and so-called decay constant fη′ .



Fγ∗γ∗→η′ form factor
We shall use also a simple parametrization of the transition
form factor called non-factorized monopole for brevity

F nf ,monopole(Q2
1 ,Q

2
2) = F (0, 0)

Λ2

Λ2 + Q2
1 + Q2

2

. (98)

This two-parameter formula can be correctly normalized at Q2
1

= 0 and Q2
2 = 0 (BABAR2018). It has also correct

asymptotic dependence on Q̄2 = (Q2
1 + Q2

2)/2. This is very
similar to the approach done long ago by Brodsky and Lepage
in the case of neutral pion.
The so-called vector meson dominance model (factorized
monopole)

F VDM(Q2
1 ,Q

2
2) = F (0, 0)

m2
V

m2
V + Q2

1

m2
V

m2
V + Q2

2

(99)



Fg∗g∗→η′ form factor

η′η′
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Rysunek: The assumed mechanisms of the γ∗γ∗ → η′ (left) and
g∗g∗ → η′ (right) couplings.



Fg∗g∗→η′ form factor
The two-gluon transition form factor is closely related to
two-photon transition form factor provided the meson is of the
quark-antiquark type. Then replacing virtual photons by
virtual gluons, the electromagnetic coupling constants by the
strong coupling constants, correcting by fractional charges of
quarks in the electromagnetic case and by color factors being
consistent with the unintegrated gluon distributions:

|Fg∗g∗→η′ (Q
2
1 ,Q

2
2)|2 = |Fγ∗γ∗→η′ (Q2

1 ,Q
2
2)|2 g2

s

g2
em

1

4Nc (N2
c − 1)

1

(< e2
q >)2

. (100)

Above g2
em must be taken provided it is included in the

definition of Fγ∗γ∗→η′ transition form factor. Usually it is not.
The relation (100) assumes simplified structure of the meson
(η′ in our case). Assuming such a relation for ηc meson leads
to a fairly good agreement of the transverse momentum
distribution of ηc produced in proton-proton collisions with the
LHCb data (Babiarz et al.).



Distribution amplitudes from Kroll and

Passek-Kumericki



Fγ∗γ∗→η′ form factor

Rysunek: Fγ∗γ∗→η′(0, 0) as a function of β and meff .



Fγ∗γ∗→η′ form factor
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Rysunek: Q2F (Q2) as a function of one photon virtuality. We
show results for meff = 0.4 GeV and for different values of β = 0.4,
0.5, 0.6 GeV (from bottom to top). For comparison we show
experimental data from CLEO, L3, BABAR.



Fγ∗γ∗→η′ form factor

Rysunek: Fγ∗γ∗→η′(Q2
1 ,Q

2
2) obtained with the light-cone wave

function for meff = 0.4 GeV and β = 0.5 GeV (left panel) and the
leading-twist result (Kroll-Passek-Kumericki) (right panel).



Fγ∗γ∗→η′ form factor

In order to better visualize our result we will show also the
ratio:

R(Q2
1 ,Q

2
2) = F LC (Q2

1 ,Q
2
2)/F

nf ,monopole(Q2
1 ,Q

2
2) (102)



Fγ∗γ∗→η′ form factor

Rysunek: R(Q2
1 ,Q

2
2) (see Eq.(102)) with the γ∗γ∗ → η′ form

factor calculated with η′ light-cone wave function (left panel). In
this calculation meff = 0.4 GeV and β = 0.5 GeV is used for
example. In the right panel we show similar ratio obtained from
Eq.(97) with asymptotic distribution amplitude.



Fγ∗γ∗→η′ form factor



η′ production

Rysunek: Two-dimensional map in (q1t , q2t) for the full range of η′

transverse momentum. Here
√

s = 200 GeV and the KMR UGDF
was used.



η′ production

Rysunek: Two-dimensional map in (q1t , q2t) for two different
ranges of η′ transverse momentum:
4 GeV < pt < 6 GeV (left panel) and 9 GeV < pt < 11 GeV (right
panel).
Here

√
s = 200 GeV and the KMR UGDF was used.



η′ production

Rysunek: Two-dimensional map in (q2
1t , q

2
2t) for 4.5 GeV < pt <

5.5 GeV (left panel) and 9.5 GeV < pt < 10.5 GeV (right panel).
Here

√
s = 200 GeV. In this caluculation the KMR UGDF was

used and the light-cone wave function with β = 0.5 GeV.



η′ production
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s = 200 GeV. In this caluculation the KMR UGDF was



η′ production
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Rysunek: Invariant cross section as a function of meson transverse
momentum. Here

√
s = 200 GeV and the KMR UGDF was used in

the calculation. In the left panel results for the nonfactorized
monopole, LCWF with β = 0.5 GeV, and simple LT
parametrization. In the right panel we show results obtained using



η′ production
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Rysunek: Invariant cross section as a function of meson transverse
momentum in the approach with distribution amplitudes and
different initial Φgg . Here

√
s = 200 GeV and the KMR UGDF was

used in the calculation.



η′ production
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√
s = 8 TeV and the KMR UGDF

was used in the calculation. The result of the Lund string model
simulations is shown as “data points” for comparison.



Conclusions

◮ Production of several isoscalar mesons is not well
understood.

◮ The gluon-gluon fusion has been discussed as a
potentially important mechanism.

◮ It seems dominant mechanism for pseudoscalar quarkonia,
such as ηc .
It almost fully explains the LHCb experimental data.

◮ For f0(980) and f2(1270) it is probably sizeable
mechanism but cannot explain experimental data,
especially at low transverse momenta.

◮ There a coalescence (color evaporation) or FSI pion-pion
rescattering models may be alternative solutions.



Conclusions

◮ In analogy to J/ψ production we have considered
g∗g∗ → φg partonic process as potential mechanism of
the C = +1 meson production. The first calulation
suggests another mechanism. Parton fragmentation is a
candidate.

◮ We have considered also η′ meson production via
gluon-gluon fusion. Different explicit approaches to
modelling of the g∗g∗ → η′ coupling have been discussed.
The gluon-gluon component in the wave fuction of η′ may
play a role. The data from LHC would be very useful.

◮ Combining different mechanisms, including gluon-gluon
fusion, may be necessary in future. May be a difficult
task.


