Towards probing quantum foundations at subnuclear scales

Michał Eckstein \& Paweł Horodecki

arXiv:2103.12000

UNIWERSYTET GDAŃSKI

Gdynia/Kraków, 26 April 2021

Routes towards New Physics

Standard Model \subset QFT $=$ Quantum Mechanics + Special Relativity Routes towards New Physics: (-) Beyond Standard Model, but still in QFT (2) Beyond Special Relativity, but assuming QM (3) Beyond Quantum Mechanics

Routes towards New Physics

Standard Model \subset QFT $=$ Quantum Mechanics + Special Relativity

Routes towards New Physics:
(1) Beyond Standard Model, but still in QFT
(2) Beyond Special Relativity, but assuming QM
(3) Beyond Quantum Mechanics

Routes towards New Physics

Standard Model \subset QFT $=$ Quantum Mechanics + Special Relativity

Routes towards New Physics:
(1) Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation,
(2) Beyond Special Relativity, but assuming QM
(3) Beyond Quantum Mechanics

Routes towards New Physics

Standard Model \subset QFT $=$ Quantum Mechanics + Special Relativity

Routes towards New Physics:
(1) Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation, ...
(2) Beyond Special Relativity, but assuming QM
(3) Beyond Quantum Mechanics

Routes towards New Physics

Standard Model \subset QFT $=$ Quantum Mechanics + Special Relativity

Routes towards New Physics:
(1) Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation, ...
(2) Beyond Special Relativity, but assuming QM
- QFT in curved spacetimes - 'semi-classical' (Unruh effect,
- quantum gravity
- Beyond Quantum Mechanics

Routes towards New Physics

Standard Model \subset QFT $=$ Quantum Mechanics + Special Relativity

Routes towards New Physics:
(1) Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation, ...
(2) Beyond Special Relativity, but assuming QM
- QFT in curved spacetimes - 'semi-classical' (Unruh effect, ...)
- quantum gravity
(3) Beyond Quantum Mechanics

Routes towards New Physics

Standard Model \subset QFT $=$ Quantum Mechanics + Special Relativity

Routes towards New Physics:
(1) Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation, ...
(2) Beyond Special Relativity, but assuming QM
- QFT in curved spacetimes - 'semi-classical' (Unruh effect, ...)
- quantum gravity
(3) Beyond Quantum Mechanics

Routes towards New Physics

Standard Model \subset QFT $=$ Quantum Mechanics + Special Relativity

Routes towards New Physics:
(1) Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation, ...
(2) Beyond Special Relativity, but assuming QM
- QFT in curved spacetimes - 'semi-classical' (Unruh effect, ...)
- quantum gravity
(3) Beyond Quantum Mechanics

Why to go beyond quantum mechanics?

Motivations:

(1) Phenomenological

(2) Theoretical

(3) Information-theoretic

Why to go beyond quantum mechanics?

Motivations:

(1) Phenomenological
> - Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.
(3) Information-theoretic

Why to go beyond quantum mechanics?

Motivations:

(1) Phenomenological

- Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.
(3) Information-theoretic

Why to go beyond quantum mechanics?

Motivations:

(1) Phenomenological

- Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.
(2) Theoretical

> - We don't know any interacting non-perturbative QFT in $3+1$ dim (!) - Problems with the quantisation of gravity.
(3) Information-theoretic

Why to go beyond quantum mechanics?

Motivations:

(1) Phenomenological

- Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.
(2) Theoretical
- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
(3) Information-theoretic

Why to go beyond quantum mechanics?

Motivations:
(1) Phenomenological

- Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.
(2) Theoretical
- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.
(3) Information-theoretic

Why to go beyond quantum mechanics?

Motivations:
(1) Phenomenological

- Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.
(2) Theoretical
- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.
(3) Information-theoretic
- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

Why to go beyond quantum mechanics?

Motivations:
(1) Phenomenological

- Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.
(2) Theoretical
- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.
(3) Information-theoretic
- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

Why to go beyond quantum mechanics?

Motivations:
(1) Phenomenological

- Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.
(2) Theoretical
- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.
(3) Information-theoretic
- How is the information processed in Nature?
- Is there a more fundamental theory behind QM ?

Why to go beyond quantum mechanics?

Motivations:
(1) Phenomenological

- Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.
(2) Theoretical
- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.
(3) Information-theoretic
- How is the information processed in Nature?
- Is there a more fundamental theory behind QM ?

Einstein-Podolsky-Rosen paradox

PHYSICAL REVIEW
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

- Einstein: QM is fine, but it doesn't answer some question about reality.
- Bohr: These questions about "reality" are not well posed.

Einstein-Podolsky-Rosen paradox

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

[Roger Penrose, Road to Reality (2004)]

- Einstein: QM is fine, but it doesn't answer some question about reality.
- Bohr: These questions about "reality" are not well posed.

Einstein-Podolsky-Rosen paradox

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

[Roger Penrose, Road to Reality (2004)]

- Einstein: QM is fine, but it doesn't answer some question about reality.
- Bohr: These questions about "reality" are not well posed.

Einstein-Podolsky-Rosen paradox

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

[Roger Penrose, Road to Reality (2004)]

- Einstein: QM is fine, but it doesn't answer some question about reality.
- Bohr: These questions about "reality" are not well posed.

Bell's theorem

- Consider a hidden variable λ from a probability space (Λ, μ).
- Alice and Bob are making measurement on a composite system:
- Correlation function $C_{c}(x, y):=\int_{\Lambda} a(x, \lambda) b(y, \lambda) d \mu(\lambda)$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969) $S_{c}:=C_{c}(x, y)+C_{c}\left(x, y^{\prime}\right)+C_{c}\left(x^{\prime}, y\right)-C_{c}\left(x^{\prime}, y^{\prime}\right) \leq 2$

Bell's theorem

- Consider a hidden variable λ from a probability space (Λ, μ).
- Alice and Bob are making measurement on a composite system:
- measurement settings $x, y \in\{-1,1\}$
- measurement outcomes $a, b:\{-1,1\} \times \Lambda \rightarrow\{-1,1\}$
- Correlation function $C_{c}(x, y):=\int_{\Delta} a(x, \lambda) b(y, \lambda) d \mu(\lambda)$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969) $S_{c}:=C_{c}(x, y)+C_{c}\left(x, y^{\prime}\right)+C_{c}\left(x^{\prime}, y\right)-C_{c}\left(x^{\prime}, y^{\prime}\right) \leq 2$

Bell's theorem

- Consider a hidden variable λ from a probability space (Λ, μ).
- Alice and Bob are making measurement on a composite system:
- measurement settings $x, y \in\{-1,1\}$
- measurement outcomes $a, b:\{-1,1\} \times \Lambda \rightarrow\{-1,1\}$
- Correlation function $C_{c}(x, y):=\int_{\Lambda} a(x, \lambda) b(y, \lambda) d \mu(\lambda)$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969) $S_{c}:=C_{c}(x, y)+C_{c}\left(x, y^{\prime}\right)+C_{c}\left(x^{\prime}, y\right)-C_{c}\left(x^{\prime}, y^{\prime}\right) \leq 2$

Bell's theorem

- Consider a hidden variable λ from a probability space (Λ, μ).
- Alice and Bob are making measurement on a composite system:
- measurement settings $x, y \in\{-1,1\}$
- measurement outcomes $a, b:\{-1,1\} \times \Lambda \rightarrow\{-1,1\}$
- Correlation function $C_{c}(x, y):=\int_{\Lambda} a(x, \lambda) b(y, \lambda) d \mu(\lambda)$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

Quantum Mechanics

Bell's theorem

- Consider a hidden variable λ from a probability space (Λ, μ).
- Alice and Bob are making measurement on a composite system:
- measurement settings $x, y \in\{-1,1\}$
- measurement outcomes $a, b:\{-1,1\} \times \Lambda \rightarrow\{-1,1\}$
- Correlation function $C_{c}(x, y):=\int_{\Lambda} a(x, \lambda) b(y, \lambda) d \mu(\lambda)$
Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)
\square

Bell's theorem

- Consider a hidden variable λ from a probability space (Λ, μ).
- Alice and Bob are making measurement on a composite system:
- measurement settings $x, y \in\{-1,1\}$
- measurement outcomes $a, b:\{-1,1\} \times \Lambda \rightarrow\{-1,1\}$
- Correlation function $C_{c}(x, y):=\int_{\Lambda} a(x, \lambda) b(y, \lambda) d \mu(\lambda)$ Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$
S_{c}:=C_{c}(x, y)+C_{c}\left(x, y^{\prime}\right)+C_{c}\left(x^{\prime}, y\right)-C_{c}\left(x^{\prime}, y^{\prime}\right) \leq 2
$$

Bell's theorem

- Consider a hidden variable λ from a probability space (Λ, μ).
- Alice and Bob are making measurement on a composite system:
- measurement settings $x, y \in\{-1,1\}$
- measurement outcomes $a, b:\{-1,1\} \times \Lambda \rightarrow\{-1,1\}$
- Correlation function $C_{c}(x, y):=\int_{\Lambda} a(x, \lambda) b(y, \lambda) d \mu(\lambda)$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$
S_{c}:=C_{c}(x, y)+C_{c}\left(x, y^{\prime}\right)+C_{c}\left(x^{\prime}, y\right)-C_{c}\left(x^{\prime}, y^{\prime}\right) \leq 2
$$

Quantum Mechanics

$$
S_{q}:=C_{q}(x, y)+C_{q}\left(x, y^{\prime}\right)+C_{q}\left(x^{\prime}, y\right)-C_{q}\left(x^{\prime}, y^{\prime}\right) \leq 2 \sqrt{2}
$$

Bell's theorem

- Consider a hidden variable λ from a probability space (Λ, μ).
- Alice and Bob are making measurement on a composite system:
- measurement settings $x, y \in\{-1,1\}$
- measurement outcomes $a, b:\{-1,1\} \times \Lambda \rightarrow\{-1,1\}$
- Correlation function $C_{c}(x, y):=\int_{\Lambda} a(x, \lambda) b(y, \lambda) d \mu(\lambda)$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$
S_{c}:=C_{c}(x, y)+C_{c}\left(x, y^{\prime}\right)+C_{c}\left(x^{\prime}, y\right)-C_{c}\left(x^{\prime}, y^{\prime}\right) \leq 2
$$

Quantum Mechanics

$$
S_{q}:=C_{q}(x, y)+C_{q}\left(x, y^{\prime}\right)+C_{q}\left(x^{\prime}, y\right)-C_{q}\left(x^{\prime}, y^{\prime}\right) \leq 2 \sqrt{2}>S_{c}=2
$$

Bell's tests

The black box approach

The experimental (frequency) correlation function:

$$
\begin{aligned}
C_{e} & =\frac{N_{++}+N_{--}-N_{+-}-N_{-+}}{N_{++}+N_{--}+N_{+-}+N_{-+}} \\
& \in[-1,+1]
\end{aligned}
$$

Bell's tests

The black box approach

The experimental (frequency) correlation function:

$$
\begin{aligned}
C_{e} & =\frac{N_{++}+N_{--}-N_{+-}-N_{-+}}{N_{++}+N_{--}+N_{+-}+N_{-+}} \\
& \in[-1,+1]
\end{aligned}
$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

Bell's tests

The black box approach

The experimental (frequency) correlation function:

$$
\begin{aligned}
C_{e} & =\frac{N_{++}+N_{--}-N_{+-}-N_{-+}}{N_{++}+N_{--}+N_{+-}+N_{-+}} \\
& \in[-1,+1]
\end{aligned}
$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

PhySīCS [Alain Aspect, Physics 8, 123 (2015)]
VIEWPOINT

Closing the Door on Einstein and Bohr's Quantum Debate

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
- It holds in any classical theory.
- It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
- It holds in any classical theory.
- It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
- It holds in any classical theory.
- It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
- It holds in any classical theory.
- It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
- It holds in any classical theory.
- It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
- It holds in any classical theory.
- It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.
- new experiments
- new devices

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
- It holds in any classical theory.
- It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.
- new experiments
- new devices

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
- It holds in any classical theory.
- It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.
- new experiments
- new devices

Our approach

Our goal: Ask questions, which cannot be asked within QFT paradigm.

Our approach

Our goal: Ask questions, which cannot be asked within QFT paradigm.

- How is the information processed within the nucleon?

Our approach

Our goal: Ask questions, which cannot be asked within QFT paradigm.

- How is the information processed within the nucleon?

Our approach

Our goal: Ask questions, which cannot be asked within QFT paradigm.

- How is the quantum information processed within the nucleon?

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- pure states $\psi \in \mathcal{H}$
- mixed states $\rho=\sum_{i} p_{i} \psi_{i}$, with $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$
- Dure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_{i} p_{i} x_{i}$
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- pure states $\psi \in \mathcal{H}$
- mixed states $\rho=\sum_{i} p_{i} \psi_{i}$, with $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$
- Pure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_{i} p_{i} x_{i}$
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- pure states $\psi \in \mathcal{H}$
- mixed states $\rho=\sum_{i} p_{i} \psi_{i}$, with $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$
- Pure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_{i} p_{i} x_{i}$
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- pure states $\psi \in \mathcal{H}$
- mixed states $\rho=\sum_{i} p_{i} \psi_{i}$, with $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$
- Pure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_{i} p_{i} x_{i}$
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- pure states $\psi \in \mathcal{H}$
- mixed states $\rho=\sum_{i} p_{i} \psi_{i}$, with $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$
- Pure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_{i} p_{i} x_{i}$.
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- pure states $\psi \in \mathcal{H}$
- mixed states $\rho=\sum_{i} p_{i} \psi_{i}$, with $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$
- Pure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_{i} p_{i} x_{i}$.
- Quantum information can be non-local

Quantum information

- Classical information - collection of bits
- inputs x
- outputs a
- experiments $P(a \mid x)$
- Quantum information - states on a Hilbert space \mathcal{H}
- pure states $\psi \in \mathcal{H}$
- mixed states $\rho=\sum_{i} p_{i} \psi_{i}$, with $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$
- Pure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_{i} p_{i} x_{i}$.
- Quantum information can be non-local

$$
\rho^{A B}=\sum_{i} \lambda_{i} \psi_{i}^{A} \otimes \chi_{i}^{B}
$$

[Roger Penrose, Road to Reality (2004)]

Quantum-data boxes

- We regard physical systems (e.g. a single nucleon) as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed locally with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.

Quantum-data boxes

- We regard physical systems (e.g. a single nucleon) as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed locally with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.

Quantum-data boxes

- We regard physical systems (e.g. a single nucleon) as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed locally with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.

Quantum-data boxes

- We regard physical systems (e.g. a single nucleon) as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]
- p are classical parameters (e.g. scattering kinematics)
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.

Quantum-data boxes

- We regard physical systems (e.g. a single nucleon) as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]
- p are classical parameters (e.g. scattering kinematics)
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.

Quantum-data boxes

- We regard physical systems (e.g. a single nucleon) as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]
- p are classical parameters (e.g. scattering kinematics)
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$.
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.

Quantum-data boxes

- We regard physical systems (e.g. a single nucleon) as Q-data boxes, i.e. quantum-information processing devices.
- A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]
- p are classical parameters (e.g. scattering kinematics)
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$.
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state $\rho_{\text {out }}$ on \mathcal{H} is an $n \times n$ matrix, with $n=\operatorname{dim} \mathcal{H}$.
- Take a complete set of projectors $\left\{M_{i}\right\}_{i=1}^{n^{2}}$ (e.g. $\left.\left\{\mathbb{1}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}\right)$
- Make multiple measurements and register $\left\{P\left(a_{j} \mid M_{i}\right)\right\}_{i, j}$
- The state $\rho_{\text {out }}$ is estimated from $\operatorname{Tr}\left(M_{i} \rho_{\text {out }}\right)=\sum_{j} a_{j} P\left(a_{j} \mid M_{i}\right)$.

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared

Quantum state tomography:

- A mixed state $\rho_{\text {out }}$ on \mathcal{H} is an $n \times n$ matrix, with $n=\operatorname{dim} \mathcal{H}$.
- Take a complete set of projectors $\left\{M_{i}\right\}_{i=1}^{n^{2}}$ (e.g. $\left\{\mathbb{1}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$)
- Make multiple measurements and register $\left\{P\left(a_{j} \mid M_{i}\right)\right\}_{i, j}$
- The state $\rho_{\text {out }}$ is estimated from $\operatorname{Tr}\left(M_{i} \rho_{\text {out }}\right)=\sum_{j} a_{j} P\left(a_{j} \mid M_{i}\right)$

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state $\rho_{\text {out }}$ on \mathcal{H} is an $n \times n$ matrix, with $n=\operatorname{dim} \mathcal{H}$.
- Take a complete set of projectors $\left\{M_{i}\right\}_{i=1}^{n_{1}^{2}}$ (e.g. $\left\{\mathbb{1}, \sigma_{x}, \sigma_{\psi}, \sigma_{z}\right\}$)
- Make multiple measurements and register $\left\{P\left(a_{j} \mid M_{i}\right)\right\}_{i, j}$
- The state $\rho_{\text {out }}$ is estimated from $\operatorname{Tr}\left(M_{i} \rho_{\text {out }}\right)=\sum_{j} a_{j} P\left(a_{j} \mid M_{i}\right)$.

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state $\rho_{\text {out }}$ on \mathcal{H} is an $n \times n$ matrix, with $n=\operatorname{dim} \mathcal{H}$.
- Take a complete set of projectors $\left\{M_{i}\right\}_{i=1}^{n^{2}}$ (e.g. $\left.\left\{\mathbb{1}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}\right)$
- Make multiple measurements and register $\left\{P\left(a_{j} \mid M_{i}\right)\right\}_{i, j}$
- The state $\rho_{\text {out }}$ is estimated from $\operatorname{Tr}\left(M_{i} \rho_{\text {out }}\right)=\sum_{j} a_{j} P\left(a_{j} \mid M_{i}\right)$

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state $\rho_{\text {out }}$ on \mathcal{H} is an $n \times n$ matrix, with $n=\operatorname{dim} \mathcal{H}$.
- Take a complete set of projectors $\left\{M_{i}\right\}_{i=1}^{n^{2}}$ (e.g. $\left\{\mathbb{1}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$)
- Make multiple measurements and register $\left\{P\left(a_{j} \mid M_{i}\right)\right\}_{i, j}$
- The state $\rho_{\text {out }}$ is estimated from $\operatorname{Tr}\left(M_{i} \rho_{\text {out }}\right)=\sum_{j} a_{j} P\left(a_{j} \mid M_{i}\right)$

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state $\rho_{\text {out }}$ on \mathcal{H} is an $n \times n$ matrix, with $n=\operatorname{dim} \mathcal{H}$.
- Take a complete set of projectors $\left\{M_{i}\right\}_{i=1}^{n^{2}}$ (e.g. $\left\{\mathbb{1}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$).
- Make multiple measurements and register $\left\{P\left(a_{j} \mid M_{i}\right)\right\}_{i, j}$
- The state $\rho_{\text {out }}$ is estimated from $\operatorname{Tr}\left(M_{i} \rho_{\text {out }}\right)=\sum_{j} a_{j} P\left(a_{j} \mid M_{i}\right)$

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state $\rho_{\text {out }}$ on \mathcal{H} is an $n \times n$ matrix, with $n=\operatorname{dim} \mathcal{H}$.
- Take a complete set of projectors $\left\{M_{i}\right\}_{i=1}^{n^{2}}$ (e.g. $\left\{\mathbb{1}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$).
- Make multiple measurements and register $\left\{P\left(a_{j} \mid M_{i}\right)\right\}_{i, j}$
- The state $\rho_{\text {out }}$ is estimated from $\operatorname{Tr}\left(M_{i} \rho_{\text {out }}\right)=\sum_{j} a_{j} P\left(a_{j} \mid M_{i}\right)$

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state $\rho_{\text {out }}$ on \mathcal{H} is an $n \times n$ matrix, with $n=\operatorname{dim} \mathcal{H}$.
- Take a complete set of projectors $\left\{M_{i}\right\}_{i=1}^{n^{2}}$ (e.g. $\left.\left\{\mathbb{1}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}\right)$.
- Make multiple measurements and register $\left\{P\left(a_{j} \mid M_{i}\right)\right\}_{i, j}$
- The state $\rho_{\text {out }}$ is estimated from $\operatorname{Tr}\left(M_{i} \rho_{\text {out }}\right)=\sum_{j} a_{j} P\left(a_{j} \mid M_{i}\right)$.

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state $\rho_{\text {out }}$ on \mathcal{H} is an $n \times n$ matrix, with $n=\operatorname{dim} \mathcal{H}$.
- Take a complete set of projectors $\left\{M_{i}\right\}_{i=1}^{n^{2}}$ (e.g. $\left.\left\{\mathbb{1}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}\right)$.
- Make multiple measurements and register $\left\{P\left(a_{j} \mid M_{i}\right)\right\}_{i, j}$
- The state $\rho_{\text {out }}$ is estimated from $\operatorname{Tr}\left(M_{i} \rho_{\text {out }}\right)=\sum_{j} a_{j} P\left(a_{j} \mid M_{i}\right)$.

[J. Huwer et al., New J. Phys. 15, 025033 (2013)]

Quantum-data test

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\%$ in one needs to perform the full tomography of pout.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$.
- The more tomographic measurements, the more reliable the test.
- The input $\%$ in is pure, but the output pout is mixed

Quantum-data test

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$
- The more tomographic measurements, the more reliable the test.
- The input $\psi_{\text {in }}$ is pure, but the output $\rho_{\text {out }}$ is mixed.

Quantum-data test

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, t}$
- The more tomographic measurements, the more reliable the test.
e The input $\%$ in is pure, but the output pout is mived

Quantum-data test

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$.
- The more tomographic measurements, the more reliable the test. - The input $\psi_{\text {in }}$ is pure, but the output $\rho_{\text {out }}$ is mixed.

Quantum-data test

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$.
- The more tomographic measurements, the more reliable the test.
- The input $\psi_{\text {in }}$ is pure, but the output $\rho_{\text {out }}$ is mixed.

Quantum-data test

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$.
- The more tomographic measurements, the more reliable the test.
- The input $\psi_{\text {in }}$ is pure, but the output $\rho_{\text {out }}$ is mixed.

Example: Helstrom test

- Suppose that we have two available inputs ψ^{1}, ψ^{2}.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate:

- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

- If $P_{\text {succ }}\left(\rho_{\text {out }}^{1}, \rho_{\text {out }}^{2}\right)>P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right)$ then the \mathbf{Q}-data box is not quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM

Example: Helstrom test

- Suppose that we have two available inputs ψ^{1}, ψ^{2}.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate:

- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

- If $P_{\text {succ }}\left(\rho_{\text {out }}^{1}, \rho_{\text {out }}^{2}\right)>P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right)$ then the Q -data box is not quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

Example: Helstrom test

- Suppose that we have two available inputs ψ^{1}, ψ^{2}.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate:

- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

- If $P_{\text {succ }}\left(\rho_{\text {out }}^{1}, \rho_{\text {out }}^{2}\right)>P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right)$ then the Q-data box is not quantum.
- Viotation of the He'strom bound occurs in non-linear modifications of QMA

Example: Helstrom test

- Suppose that we have two available inputs ψ^{1}, ψ^{2}.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$
P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right):=\frac{1}{2} \sum_{i=1}^{2} P\left(a=i \mid \psi^{i}\right),
$$

- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

- If $P_{\text {succ }}\left(\rho_{\text {out }}^{1}, \rho_{\text {out }}^{2}\right)>P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right)$ then the Q-data box is not quantum.
- Volation of the 'le'strom bound occurs in non-linear modirications of QM.

Example: Helstrom test

- Suppose that we have two available inputs ψ^{1}, ψ^{2}.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$
P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right):=\frac{1}{2} \sum_{i=1}^{2} P\left(a=i \mid \psi^{i}\right),
$$

- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

$$
P_{\text {succ }} \leq P_{\text {succ }}^{\mathrm{QM}}:=\frac{1}{2}\left(1+\sqrt{1-\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}}\right)
$$

- If $P_{\text {succ }}\left(\rho_{\text {out }}^{1}, \rho_{\text {out }}^{2}\right)>P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right)$ then the Q -data box is not quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

Example: Helstrom test

- Suppose that we have two available inputs ψ^{1}, ψ^{2}.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$
P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right):=\frac{1}{2} \sum_{i=1}^{2} P\left(a=i \mid \psi^{i}\right),
$$

- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

$$
P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}}:=\frac{1}{2}\left(1+\sqrt{1-\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}}\right)
$$

- If $P_{\text {succ }}\left(\rho_{\text {out }}^{1}, \rho_{\text {out }}^{2}\right)>P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right)$ then the Q -data box is not quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM

Example: Helstrom test

- Suppose that we have two available inputs ψ^{1}, ψ^{2}.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$
P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right):=\frac{1}{2} \sum_{i=1}^{2} P\left(a=i \mid \psi^{i}\right),
$$

- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

$$
P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}}:=\frac{1}{2}\left(1+\sqrt{1-\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}}\right)
$$

- If $P_{\text {succ }}\left(\rho_{\text {out }}^{1}, \rho_{\text {out }}^{2}\right)>P_{\text {succ }}\left(\psi^{1}, \psi^{2}\right)$ then the Q -data box is not quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

Towards an experiment

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying ψ_{in}, e.g. electron's spin or photon's polarization.
a Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(4) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Towards an experiment

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(4) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Towards an experiment

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Towards an experiment

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Towards an experiment

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Towards an experiment

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(4) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Towards an experiment

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Towards an experiment

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Towards an experiment

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Toward an experiment

- Use highly-polarized beams of electrons or photons.
- Measure projectively as
many projectiles as possible.
- Post-select the data wrt particle types and kinematic parameters.
- Reconstruct the output state for every channel.

Toward an experiment

- Use highly-polarized beams of electrons or photons.
- Measure projectively as many projectiles as possible.
- Post-select the data wrt particle types and kinematic parameters.
- Reconstruct the output state for every channel.

Toward an experiment

- Use highly-polarized beams of electrons or photons.
- Measure projectively as many projectiles as possible.
- Post-select the data wrt particle types and kinematic parameters.

- Reconstruct the output state for every channel.

Toward an experiment

- Use highly-polarized beams of electrons or photons.
- Measure projectively as many projectiles as possible.
- Post-select the data wrt particle types and kinematic parameters.

- Reconstruct the output state for every channel.

Summary

arXiv:2103.12000

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is theory-independent.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Summary

arXiv:2103.12000

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is theory-independent.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Summary

arXiv:2103.12000

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is theory-independent.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Summary

arXiv:2103.12000

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is theory-independent.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Summary

arXiv:2103.12000

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is theory-independent.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Summary

arXiv:2103.12000

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is theory-independent.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

