Towards probing quantum foundations at subnuclear scales

Michał Eckstein & Paweł Horodecki

arXiv:2103.12000

Gdynia/Kraków, 26 April 2021

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation, ...
- 2 Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
 - quantum gravity
- Beyond Quantum Mechanics

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation,
- 2 Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
 - quantum gravity
- Beyond Quantum Mechanics

2/16

- 4 同 ト 4 ヨ ト 4 ヨ ト

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, ...
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
 - quantum gravity
- Beyond Quantum Mechanics

2/16

- 4 目 ト 4 日 ト

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation,
- 2 Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
 - quantum gravity
- Beyond Quantum Mechanics

2/16

- 人間 ト イヨ ト - イヨ ト - ヨ

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation,
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
 - quantum gravity
- Beyond Quantum Mechanics

イロト 不得 トイヨト イヨト 三日

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation,
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
 - quantum gravity
- Beyond Quantum Mechanics

2/16

イロト 不得 とくき とくき とうせい

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, ...
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
 - quantum gravity

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, ...
- 2 Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
 - quantum gravity
- Beyond Quantum Mechanics

Motivations:

Phenomenological

• Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.

2 Theoretical

- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.

Information-theoretic

- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

Why to go beyond quantum mechanics?

Motivations:

Phenomenological

• Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.

2 Theoretical

- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.

3 Information-theoretic

- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Motivations:

Phenomenological

• Hypothesis: The resolution to some of the fundamental puzzles $\overline{(e.g. dark matter, dark energy etc.)}$ requires a new paradigm.

2 Theoretical

- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.

3 Information-theoretic

- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Motivations:

Phenomenological

• Hypothesis: The resolution to some of the fundamental puzzles $\overline{(e.g. dark matter, dark energy etc.)}$ requires a new paradigm.

2 Theoretical

- $\bullet\,$ We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.

3 Information-theoretic

- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Motivations:

- Phenomenological
 - Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.

2 Theoretical

- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.

3 Information-theoretic

- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Motivations:

- Phenomenological
 - Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.

2 Theoretical

- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.

Information-theoretic

- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

Motivations:

- Phenomenological
 - Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.

2 Theoretical

- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.

Information-theoretic

- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Motivations:

- Phenomenological
 - Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.

2 Theoretical

- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.
- Information-theoretic
 - How is the information processed in Nature?
 - Is there a more fundamental theory behind QM?

Motivations:

- Phenomenological
 - Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.

2 Theoretical

- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.
- Information-theoretic
 - How is the information processed in Nature?
 - Is there a more fundamental theory behind QM?

Motivations:

- Phenomenological
 - Hypothesis: The resolution to some of the fundamental puzzles (e.g. dark matter, dark energy etc.) requires a new paradigm.

2 Theoretical

- We don't know any interacting non-perturbative QFT in 3+1 dim (!)
- Problems with the quantisation of gravity.

Information-theoretic

- How is the information processed in Nature?
- Is there a more fundamental theory behind QM?

MAY 15, 1935

PHYSICAL REVIEW

VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935)

Einstein: QM is fine, but it doesn't answer some question about reality.

• Bohr: These questions about "reality" are not well posed.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

4/16

イロト イポト イヨト イヨト

MAY 15, 1935 PHYSICAL REVIEW VOLUME 47 Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935) 3 Titan Earth EPR source [Roger Penrose, Road to Reality (2004)]

Einstein: QM is fine, but it doesn't answer some question about reality.

• Bohr: These questions about "reality" are not well posed.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

A 4 4 1

• Einstein: QM is fine, but it doesn't answer some question about reality.

• Bohr: These questions about "reality" are not well posed.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

[Roger Penrose, Road to Reality (2004)]

- Einstein: QM is fine, but it doesn't answer some question about reality.
- Bohr: These questions about "reality" are not well posed.

Michał Eckstein (ZOA, IFT, UJ)

• Consider a hidden variable λ from a probability space (Λ, μ) .

Alice and Bob are making measurement on a composite system:

- measurement settings $x,y\in\{-1,1]$
- measurement outcomes $a, b: \{-1, 1\} imes \Lambda o \{-1, 1\}$

• Correlation function
$$C_c(x,y) := \int_{\Lambda} a(x,\lambda)b(y,\lambda)d\mu(\lambda)$$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$S_c := C_c(x, y) + C_c(x, y') + C_c(x', y) - C_c(x', y') \le 2$$

Quantum Mechanics

$$S_q := C_q(x, y) + C_q(x, y') + C_q(x', y) - C_q(x', y') \le 2\sqrt{2}$$

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

✓ ♂ → < ≥ → < ≥ →</p>
Gdynia, 26 Apr 2021

- Consider a hidden variable λ from a probability space (Λ, μ) .
- Alice and Bob are making measurement on a composite system:
 - measurement settings $x, y \in \{-1, 1\}$
 - measurement outcomes $a, b: \{-1, 1\} \times \Lambda \rightarrow \{-1, 1\}$

• Correlation function
$$C_c(x,y) := \int_{\Lambda} a(x,\lambda)b(y,\lambda)d\mu(\lambda)$$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$S_c := C_c(x, y) + C_c(x, y') + C_c(x', y) - C_c(x', y') \le 2$$

Quantum Mechanics

$$S_q := C_q(x, y) + C_q(x, y') + C_q(x', y) - C_q(x', y') \le 2\sqrt{2}$$

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- Consider a hidden variable λ from a probability space (Λ, μ) .
- Alice and Bob are making measurement on a composite system:
 - measurement settings $x,y \in \{-1,1\}$
 - measurement **outcomes** $a, b : \{-1, 1\} \times \Lambda \rightarrow \{-1, 1\}$

• Correlation function
$$C_c(x,y) := \int_{\Lambda} a(x,\lambda)b(y,\lambda)d\mu(\lambda)$$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$S_c := C_c(x, y) + C_c(x, y') + C_c(x', y) - C_c(x', y') \le 2$$

Quantum Mechanics

$$S_q := C_q(x, y) + C_q(x, y') + C_q(x', y) - C_q(x', y') \le 2\sqrt{2}$$

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- Consider a hidden variable λ from a probability space (Λ, μ) .
- Alice and Bob are making measurement on a composite system:
 - measurement settings $x,y \in \{-1,1\}$
 - measurement outcomes $a,b:\{-1,1\}\times\Lambda\to\{-1,1\}$

• Correlation function
$$C_c(x,y) := \int_{\Lambda} a(x,\lambda)b(y,\lambda)d\mu(\lambda)$$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$S_c := C_c(x, y) + C_c(x, y') + C_c(x', y) - C_c(x', y') \le 2$$

Quantum Mechanics

$$S_q := C_q(x, y) + C_q(x, y') + C_q(x', y) - C_q(x', y') \le 2\sqrt{2}$$

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Consider a hidden variable λ from a probability space (Λ, μ) .
- Alice and Bob are making measurement on a composite system:
 - measurement settings $x,y \in \{-1,1\}$
 - measurement outcomes $a,b:\{-1,1\}\times\Lambda\to\{-1,1\}$

• Correlation function
$$C_c(x,y) := \int_{\Lambda} a(x,\lambda)b(y,\lambda)d\mu(\lambda)$$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$S_c := C_c(x, y) + C_c(x, y') + C_c(x', y) - C_c(x', y') \le 2$$

Quantum Mechanics

$$S_q := C_q(x, y) + C_q(x, y') + C_q(x', y) - C_q(x', y') \le 2\sqrt{2}$$

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

✓ ♂ ► < ≥ ► < ≥ ►</p>
Gdynia, 26 Apr 2021

- Consider a hidden variable λ from a probability space (Λ, μ) .
- Alice and Bob are making measurement on a composite system:
 - measurement settings $x,y \in \{-1,1\}$
 - measurement outcomes $a,b:\{-1,1\}\times\Lambda\to\{-1,1\}$

• Correlation function
$$C_c(x,y) := \int_{\Lambda} a(x,\lambda)b(y,\lambda)d\mu(\lambda)$$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$S_c := C_c(x, y) + C_c(x, y') + C_c(x', y) - C_c(x', y') \le 2$$

Quantum Mechanics

 $S_q := C_q(x, y) + C_q(x, y') + C_q(x', y) - C_q(x', y') \le 2\sqrt{2}$

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- 3

5/16

・ 同 ト ・ ヨ ト ・ ヨ ト

- Consider a hidden variable λ from a probability space (Λ, μ) .
- Alice and Bob are making measurement on a composite system:
 - measurement settings $x, y \in \{-1, 1\}$
 - measurement **outcomes** $a, b : \{-1, 1\} \times \Lambda \rightarrow \{-1, 1\}$

• Correlation function
$$C_c(x,y) := \int_{\Lambda} a(x,\lambda)b(y,\lambda)d\mu(\lambda)$$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$S_c := C_c(x, y) + C_c(x, y') + C_c(x', y) - C_c(x', y') \le 2$$

Quantum Mechanics

1

$$S_q := C_q(x, y) + C_q(x, y') + C_q(x', y) - C_q(x', y') \le 2\sqrt{2}$$

Michał Eckstein (ZOA, IFT, UJ)

< 1 →

э

- Consider a hidden variable λ from a probability space (Λ, μ) .
- Alice and Bob are making measurement on a composite system:
 - measurement settings $x, y \in \{-1, 1\}$
 - measurement **outcomes** $a, b : \{-1, 1\} \times \Lambda \rightarrow \{-1, 1\}$

• Correlation function
$$C_c(x,y) := \int_{\Lambda} a(x,\lambda)b(y,\lambda)d\mu(\lambda)$$

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

$$S_c := C_c(x, y) + C_c(x, y') + C_c(x', y) - C_c(x', y') \le 2$$

Quantum Mechanics

$$S_q := C_q(x, y) + C_q(x, y') + C_q(x', y) - C_q(x', y') \le 2\sqrt{2} > S_c = 2$$

Michał Eckstein (ZOA, IFT, UJ)

< 1 →

э

Bell's tests

The **black box** approach

The *experimental* (frequency) correlation function:

$$\begin{split} C_e &= \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}} \\ &\in [-1,+1] \end{split}$$

Michał Eckstein (ZOA, IFT, UJ)

< 4 1 →

 → - 3

Bell's tests

The black box approach

The *experimental* (frequency) correlation function:

$$\begin{split} C_e &= \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}} \\ &\in [-1,+1] \end{split}$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

< ∃⇒

Bell's tests

The black box approach

The *experimental* (frequency) correlation function:

$$C_e = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}}$$

 $\in [-1, +1]$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

VIEWPOINT

Closing the Door on Einstein and Bohr's Quantum Debate

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is **violated** in Nature.
- Bell's theorem is theory-independent.
 - It holds in *any* classical theory.
 - It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a **new type of questions**.
- This gave birth to the idea of quantum information processing.
 - new experiments
 - new devices

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Some remarks about Bell's theorem and tests

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
 - It holds in *any* classical theory.
 - It *does not* require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a **new type of questions**.
- This gave birth to the idea of quantum information processing.
 - new experiments
 - new devices

Michał Eckstein (ZOA, IFT, UJ)
- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
 - It holds in any classical theory.
 - It *does not* require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a **new type of questions**.
- This gave birth to the idea of quantum information processing.
 - new experiments
 - new devices

Michał Eckstein (ZOA, IFT, UJ)

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is **theory-independent**.
 - It holds in any classical theory.
 - It *does not* require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a **new type of questions**.
- This gave birth to the idea of quantum information processing.
 - new experiments
 - new devices

Michał Eckstein (ZOA, IFT, UJ)

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is **theory-independent**.
 - It holds in any classical theory.
 - It *does not* require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a **new type of questions**.
- This gave birth to the idea of quantum information processing.
 - new experiments
 - new devices

Michał Eckstein (ZOA, IFT, UJ)

7/16

不得下 イヨト イヨト

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
 - It holds in any classical theory.
 - It *does not* require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.
 - new experiments
 - new devices

Michał Eckstein (ZOA, IFT, UJ)

7/16

(4 冊) (4 日) (4 日)

- Bell–CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
 - It holds in any classical theory.
 - It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of **quantum information** processing.
 - new experiments
 - new devices

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- 3

- Bell–CHSH inequality is violated in Nature.
- Bell's theorem is theory-independent.
 - It holds in any classical theory.
 - It does not require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of **quantum information** processing.
 - new experiments
 - new devices

Michał Eckstein (ZOA, IFT, UJ)

- Bell-CHSH inequality is violated in Nature.
- Bell's theorem is **theory-independent**.
 - It holds in any classical theory.
 - It *does not* require quantum mechanics.
- In 1964 there was no reason question the validity of QM and QFT!
- Bell's theorem promotes a new type of questions.
- This gave birth to the idea of quantum information processing.
 - new experiments
 - new devices

Michał Eckstein (ZOA, IFT, UJ)

- 3

Our goal: Ask questions, which cannot be asked within QFT paradigm.

• How is the information processed within the nucleon?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

< A >

3

Our goal: Ask questions, which cannot be asked within QFT paradigm.

• How is the information processed within the nucleon?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

A 4 4 1

프 문 문 프 문

3

Our goal: Ask questions, which cannot be asked within QFT paradigm.

• How is the information processed within the nucleon?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

3

Our goal: Ask questions, which cannot be asked within QFT paradigm.

• How is the quantum information processed within the nucleon?

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

8/16

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classical information – collection of **bits** •

- inputs x
- outputs a
- experiments $P(a \mid x)$

• Quantum information – states on a Hilbert space \mathcal{H}

イロト 不得 トイヨト イヨト 二日

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

• Classical information – collection of **bits**

- inputs x
- outputs a
- experiments $P(a \mid x)$

• Quantum information – states on a Hilbert space ${\cal H}$

- pure states $\psi \in \mathcal{H}$
- ullet mixed states $ho = \sum_i p_i \psi_i$, with $0 \leq p_i \leq 1$ and $\sum_i p_i = 1$
- Pure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_i p_i x_i$.
- Quantum information can be non-local

$$\rho^{AB} = \sum_{i} \lambda_i \, \psi_i^A \otimes \chi_i^B$$

イロト 不得下 イヨト イヨト 二日

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- Classical information collection of **bits**
 - inputs x
 - \bullet outputs a
 - experiments $P(a \mid x)$

• Quantum information – states on a Hilbert space ${\cal H}$

- pure states $\psi \in \mathcal{H}$
- ullet mixed states $ho = \sum_i p_i \psi_i$, with $0 \leq p_i \leq 1$ and $\sum_i p_i = 1$
- Pure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_i p_i x_i$.
- Quantum information can be non-local

$$\rho^{AB} = \sum_{i} \lambda_i \, \psi_i^A \otimes \chi_i^B$$

イロト 不得下 イヨト イヨト 二日

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- Classical information collection of **bits**
 - inputs x
 - \bullet outputs a
 - experiments $P(a \mid x)$

Quantum information – states on a Hilbert space H

- pure states $\psi \in \mathcal{H}$
- ullet mixed states $ho = \sum_i p_i \psi_i$, with $0 \leq p_i \leq 1$ and $\sum_i p_i = 1$
- Pure states correspond to maximal information about the system.
- Classical mixed states are probability distributions $\sum_i p_i x_i$.
- Quantum information can be non-local

イロト 不得 トイヨト イヨト 二日

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

General idea

Quantum information

- Classical information collection of bits
 - inputs x
 - outputs a
 - experiments $P(a \mid x)$
- Quantum information states on a Hilbert space \mathcal{H}
 - pure states $\psi \in \mathcal{H}$
 - mixed states $\rho = \sum_i p_i \psi_i$, with $0 \le p_i \le 1$ and $\sum_i p_i = 1$
 - Pure states correspond to *maximal information* about the system.
 - Classical mixed states are probability distributions $\sum_i p_i x_i$.
- Quantum information can be **non-local**

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

General idea

Quantum information

- Classical information collection of bits
 - inputs x
 - outputs a
 - experiments $P(a \mid x)$
- Quantum information states on a Hilbert space \mathcal{H}
 - pure states $\psi \in \mathcal{H}$
 - mixed states $\rho = \sum_i p_i \psi_i$, with $0 \le p_i \le 1$ and $\sum_i p_i = 1$
 - Pure states correspond to *maximal information* about the system.
 - Classical mixed states are probability distributions $\sum_i p_i x_i$.
- Quantum information can be **non-local**

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- Classical information collection of **bits**
 - inputs x
 - \bullet outputs a
 - experiments $P(a \mid x)$
- Quantum information states on a Hilbert space \mathcal{H}
 - **pure** states $\psi \in \mathcal{H}$
 - mixed states $\rho = \sum_i p_i \psi_i$, with $0 \le p_i \le 1$ and $\sum_i p_i = 1$
 - Pure states correspond to maximal information about the system.
 - Classical mixed states are probability distributions $\sum_i p_i x_i$.
- Quantum information can be non-local

イロト 不得 トイヨト イヨト 二日

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- Classical information collection of **bits**
 - inputs x
 - \bullet outputs a
 - experiments $P(a \mid x)$
- Quantum information states on a Hilbert space ${\cal H}$
 - pure states $\psi \in \mathcal{H}$
 - mixed states $\rho = \sum_i p_i \psi_i$, with $0 \le p_i \le 1$ and $\sum_i p_i = 1$
 - Pure states correspond to maximal information about the system.
 - Classical mixed states are probability distributions $\sum_i p_i x_i$.
- Quantum information can be non-local

$$\rho^{AB} = \sum_{i} \lambda_i \, \psi_i^A \otimes \chi_i^B$$

イロト 不得 トイヨト イヨト 二日

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- Classical information collection of **bits**
 - inputs x
 - \bullet outputs a
 - experiments $P(a \mid x)$
- Quantum information states on a Hilbert space ${\cal H}$
 - **pure** states $\psi \in \mathcal{H}$
 - mixed states $\rho = \sum_i p_i \psi_i$, with $0 \le p_i \le 1$ and $\sum_i p_i = 1$
 - Pure states correspond to maximal information about the system.
 - Classical mixed states are probability distributions $\sum_i p_i x_i$.
- Quantum information can be non-local

イロト 不得 とくき とくき とうせい

- Classical information collection of bits
 - inputs x
 - \bullet outputs a
 - experiments $P(a \mid x)$
- Quantum information states on a Hilbert space ${\cal H}$
 - **pure** states $\psi \in \mathcal{H}$
 - mixed states $\rho = \sum_i p_i \psi_i$, with $0 \le p_i \le 1$ and $\sum_i p_i = 1$
 - Pure states correspond to maximal information about the system.
 - Classical mixed states are probability distributions $\sum_i p_i x_i$.
- Quantum information can be non-local

 $\rho^{AB} = \sum \lambda_i \, \psi_i^A \otimes \chi_i^B$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQの

Michał Eckstein (ZOA, IFT, UJ)

- Classical information collection of **bits**
 - inputs x
 - \bullet outputs a
 - experiments $P(a \mid x)$
- Quantum information states on a Hilbert space ${\cal H}$
 - **pure** states $\psi \in \mathcal{H}$
 - mixed states $\rho = \sum_i p_i \psi_i$, with $0 \le p_i \le 1$ and $\sum_i p_i = 1$
 - Pure states correspond to maximal information about the system.
 - Classical mixed states are probability distributions $\sum_i p_i x_i$.

• Quantum information can be non-local

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \to \psi_{in}$.

The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.

The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

Beyond QM at subnuclear scales

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

- Nat. Phys. 10, 264 (2014)]
 - p are classical parameters (e.g. scattering kinematics)
 - The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.
 - The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

イロト イポト イヨト イヨト

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

[Nat. Phys. 10, 264 (2014)]

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.

• The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

[[]Nat. Phys. 10, 264 (2014)]

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \to \psi_{in}$.

The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

10/16

< ロ > (同) (回) (回)

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

[[]Nat. Phys. 10, 264 (2014)]

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

10/16

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2}$ (e.g. $\{1, \sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2}$ (e.g. $\{1, \sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2}$ (e.g. $\{1, \sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2}$ (e.g. $\{1, \sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

イロト 不得 とくき とくき とうせい

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2}$ (e.g. $\{\mathbb{1}, \sigma_x, \sigma_y, \sigma_z\}$).
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2}$ (e.g. $\{1, \sigma_x, \sigma_y, \sigma_z\}$).
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

Michał Eckstein (ZOA, IFT, UJ)

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2}$ (e.g. $\{\mathbb{1}, \sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●
Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2}$ (e.g. $\{1, \sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_i | M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{out}) = \sum_i a_i P(a_i | M_i)$.

Quantum preparation and tomography

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- Single polarized photons are routinely prepared.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2}$ (e.g. $\{1, \sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j \mid M_i)$.

[J. Huwer et al., New J. Phys. 15, 025033 (2013)]

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

- B

- For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

- For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

- For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.

• The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

✓ ⓓ ▷ < ≧ ▷ < ≧ ▷
 Gdynia, 26 Apr 2021

- For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\rm succ}(\psi^1,\psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a=i \,|\, \psi^i),$$

• In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle|^2} \right)$$

- If $P_{\text{succ}}(\rho_{\text{out}}^1, \rho_{\text{out}}^2) > P_{\text{succ}}(\psi^1, \psi^2)$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

- 3

13/16

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\text{succ}}(\psi^1, \psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a = i \,|\, \psi^i),$$

• In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \tfrac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle|^2} \right)$$

• If $P_{\text{succ}}(\rho_{\text{out}}^1, \rho_{\text{out}}^2) > P_{\text{succ}}(\psi^1, \psi^2)$ then the Q-data box is **not** quantum.

• Violation of the Helstrom bound occurs in non-linear modifications of QM.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

13/16

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\text{succ}}(\psi^1,\psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a=i \,|\, \psi^i),$$

• In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle|^2} \right)$$

• If $P_{\text{succ}}(\rho_{\text{out}}^1, \rho_{\text{out}}^2) > P_{\text{succ}}(\psi^1, \psi^2)$ then the Q-data box is **not** quantum.

• Violation of the Helstrom bound occurs in non-linear modifications of QM.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

- 3

13/16

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\rm succ}(\psi^1,\psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a=i \,|\, \psi^i),$$

• In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\mathsf{succ}} \leq P_{\mathsf{succ}}^{\mathsf{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle|^2} \right)$$

• If $P_{\text{succ}}(\rho_{\text{out}}^1, \rho_{\text{out}}^2) > P_{\text{succ}}(\psi^1, \psi^2)$ then the Q-data box is **not** quantum.

• Violation of the Helstrom bound occurs in non-linear modifications of QM.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021

- 3

13/16

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\rm succ}(\psi^1,\psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a=i \,|\, \psi^i),$$

• In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\mathsf{succ}} \leq P_{\mathsf{succ}}^{\mathsf{QM}} \coloneqq \tfrac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle \,|^2} \right)$$

• If $P_{\text{succ}}(\rho_{\text{out}}^1, \rho_{\text{out}}^2) > P_{\text{succ}}(\psi^1, \psi^2)$ then the Q-data box is **not** quantum.

• Violation of the Helstrom bound occurs in non-linear modifications of QM.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021 13 / 16

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\rm succ}(\psi^1,\psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a=i \,|\, \psi^i),$$

• In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\mathsf{succ}} \leq P_{\mathsf{succ}}^{\mathsf{QM}} \coloneqq \tfrac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle \, |^2} \right)$$

• If $P_{\text{succ}}(\rho_{\text{out}}^1, \rho_{\text{out}}^2) > P_{\text{succ}}(\psi^1, \psi^2)$ then the Q-data box is **not** quantum.

• Violation of the Helstrom bound occurs in non-linear modifications of QM.

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

Gdynia, 26 Apr 2021 13 / 16

. .

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\rm succ}(\psi^1,\psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a=i \,|\, \psi^i),$$

• In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\mathsf{succ}} \leq P_{\mathsf{succ}}^{\mathsf{QM}} \coloneqq \tfrac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle \,|^2} \right)$$

• If $P_{\text{succ}}(\rho_{\text{out}}^1, \rho_{\text{out}}^2) > P_{\text{succ}}(\psi^1, \psi^2)$ then the Q-data box is **not** quantum.

• Violation of the Helstrom bound occurs in non-linear modifications of QM.

- 34

・ロト ・ 一 マ ・ ー マ ・ ー マ ・

Towards an experiment

Main idea:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.

Towards an experiment

Main idea:

- **1** Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.

- Need to prepare the quantum state of GeV particles.

Towards an experiment

Main idea:

- **1** Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.

- Need to prepare the quantum state of GeV particles.

Main idea:

- Prepare a 'quantum-programmed' particle carrying \u03c6_{in}, e.g. electron's spin or photon's polarization.
- Scatter it on a nucleonic target.
- O Perform projective measurements on the outgoing projectiles.
- a Reconstruct the output state ρ_{out} .

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Main idea:

- Prepare a 'quantum-programmed' particle carrying \u03c6_{in}, e.g. electron's spin or photon's polarization.
- Scatter it on a nucleonic target.
- O Perform projective measurements on the outgoing projectiles.
- Reconstruct the output state ρ_{out} .

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

- 4 同 ト 4 ヨ ト 4 ヨ ト

3

Main idea:

- Prepare a 'quantum-programmed' particle carrying \u03c6_{in}, e.g. electron's spin or photon's polarization.
- Scatter it on a nucleonic target.
- O Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Main idea:

- **1** Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Operation of the second sec
- **4** Reconstruct the output state ρ_{out} .

Challenges:

- Need to prepare the quantum state of GeV particles.
- Need to measure spin/polarization of individual projectiles.

- 3

Main idea:

- Prepare a 'quantum-programmed' particle carrying \u03c6_{in}, e.g. electron's spin or photon's polarization.
- Scatter it on a nucleonic target.
- O Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

Main idea:

- Prepare a 'quantum-programmed' particle carrying \u03c6_{in}, e.g. electron's spin or photon's polarization.
- Scatter it on a nucleonic target.
- O Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Challenges:

- Need to prepare the quantum state of GeV particles.
- Abundance of projectiles in high-energy collisions.
- Need to measure spin/polarization of individual projectiles.

- Use highly-polarized beams of electrons or photons.

- Reconstruct the output

- ∢ ≣ →

< A >

- Use highly-polarized beams of electrons or photons.
- Measure projectively as many projectiles as possible.

-∢ ≣ ▶

Toward an experiment

- Use highly-polarized beams of electrons or photons.
- Measure projectively as many projectiles as possible.
- Post-select the data wrt. particle types and kinematic parameters.

Gdynia, 26 Apr 2021

Toward an experiment

- Use highly-polarized beams of electrons or photons.
- Measure projectively as many projectiles as possible.
- Post-select the data wrt. particle types and kinematic parameters.
- Reconstruct the output state for every channel.

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is theory-independent.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

✓ ♂ ► < ≥ ► < ≥ ►</p>
Gdynia, 26 Apr 2021

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is theory-independent.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is theory-independent.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is **theory-independent**.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

 3

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is **theory-independent**.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

 3

- Quantum mechanics can be probed from an 'outside' perspective.
- The framework is **theory-independent**.
- Implementation through scattering of highly polarized beams.
- Need for measuring quantum states of individual projectiles.

Thank you for your attention!

Michał Eckstein (ZOA, IFT, UJ)

Beyond QM at subnuclear scales

 3