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quantum gravity

3 Beyond Quantum Mechanics

Michał Eckstein (ZOA, IFT, UJ) Beyond QM at subnuclear scales Gdynia, 26 Apr 2021 2 / 16



Motivation Routes towards New Physics

Routes towards New Physics

Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

1 Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

QFT in curved spacetimes – ‘semi-classical’ (Unruh effect, . . . )

quantum gravity

3 Beyond Quantum Mechanics

Michał Eckstein (ZOA, IFT, UJ) Beyond QM at subnuclear scales Gdynia, 26 Apr 2021 2 / 16



Motivation Routes towards New Physics

Routes towards New Physics

Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

1 Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

QFT in curved spacetimes – ‘semi-classical’ (Unruh effect, . . . )

quantum gravity

3 Beyond Quantum Mechanics

Michał Eckstein (ZOA, IFT, UJ) Beyond QM at subnuclear scales Gdynia, 26 Apr 2021 2 / 16



Motivation Routes towards New Physics

Routes towards New Physics

Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

1 Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

QFT in curved spacetimes – ‘semi-classical’ (Unruh effect, . . . )

quantum gravity

3 Beyond Quantum Mechanics

Michał Eckstein (ZOA, IFT, UJ) Beyond QM at subnuclear scales Gdynia, 26 Apr 2021 2 / 16



Motivation Routes towards New Physics

Routes towards New Physics

Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

1 Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

QFT in curved spacetimes – ‘semi-classical’ (Unruh effect, . . . )

quantum gravity

3 Beyond Quantum Mechanics

Michał Eckstein (ZOA, IFT, UJ) Beyond QM at subnuclear scales Gdynia, 26 Apr 2021 2 / 16



Motivation Routes towards New Physics

Routes towards New Physics

Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

1 Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

QFT in curved spacetimes – ‘semi-classical’ (Unruh effect, . . . )

quantum gravity

3 Beyond Quantum Mechanics

Michał Eckstein (ZOA, IFT, UJ) Beyond QM at subnuclear scales Gdynia, 26 Apr 2021 2 / 16



Motivation Routes towards New Physics

Routes towards New Physics

Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

1 Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

QFT in curved spacetimes – ‘semi-classical’ (Unruh effect, . . . )

quantum gravity

3 Beyond Quantum Mechanics

Michał Eckstein (ZOA, IFT, UJ) Beyond QM at subnuclear scales Gdynia, 26 Apr 2021 2 / 16



Motivation Routes towards New Physics

Routes towards New Physics

Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

1 Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

QFT in curved spacetimes – ‘semi-classical’ (Unruh effect, . . . )

quantum gravity

3 Beyond Quantum Mechanics

Michał Eckstein (ZOA, IFT, UJ) Beyond QM at subnuclear scales Gdynia, 26 Apr 2021 2 / 16



Motivation Routes towards New Physics

Why to go beyond quantum mechanics?

Motivations:

1 Phenomenological

Hypothesis: The resolution to some of the fundamental puzzles
(e.g. dark matter, dark energy etc.) requires a new paradigm.

2 Theoretical

We don’t know any interacting non-perturbative QFT in 3+1 dim (!)
Problems with the quantisation of gravity.

3 Information-theoretic

How is the information processed in Nature?
Is there a more fundamental theory behind QM?
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Motivation Theory-independent approach

Einstein–Podolsky–Rosen paradox

[Roger Penrose, Road to Reality (2004)]

Einstein: QM is fine, but it doesn’t answer some question about reality.

Bohr: These questions about “reality” are not well posed.
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Motivation Theory-independent approach

Bell’s theorem

Consider a hidden variable λ from a probability space (Λ, µ).

Alice and Bob are making measurement on a composite system:

measurement settings x, y ∈ {−1, 1}
measurement outcomes a, b : {−1, 1} × Λ→ {−1, 1}

Correlation function Cc(x, y) :=

∫
Λ

a(x, λ)b(y, λ)dµ(λ)

Bell / Clauser + Horne + Shimony + Holt Theorem (1964/1969)

Sc := Cc(x, y) + Cc(x, y
′) + Cc(x

′, y)− Cc(x
′, y′) ≤ 2

Quantum Mechanics

Sq := Cq(x, y) + Cq(x, y′) + Cq(x′, y)− Cq(x′, y′) ≤ 2
√

2

> Sc = 2
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Motivation Theory-independent approach

Bell’s tests

The black box approach

The experimental (frequency)
correlation function:

Ce =
N++ +N−− −N+− −N−+

N++ +N−− +N+− +N−+

∈ [−1,+1]

[Sandu Popescu, Nature Physics 10, 264 (2014)]

[Alain Aspect, Physics 8, 123 (2015)]
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Motivation Theory-independent approach

Some remarks about Bell’s theorem and tests

Bell–CHSH inequality is violated in Nature.

Bell’s theorem is theory-independent.

It holds in any classical theory.

It does not require quantum mechanics.

In 1964 there was no reason question the validity of QM and QFT!

Bell’s theorem promotes a new type of questions.

This gave birth to the idea of quantum information processing.

new experiments

new devices
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Motivation Theory-independent approach

Our approach

Our goal: Ask questions, which cannot be asked within QFT paradigm.

How is the information processed within the nucleon?
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Quantum-data tests General idea

Quantum information

Classical information – collection of bits
inputs x
outputs a
experiments P (a |x)

Quantum information – states on a Hilbert space H
pure states ψ ∈ H
mixed states ρ =

∑
i piψi, with 0 ≤ pi ≤ 1 and

∑
i pi = 1

Pure states correspond to maximal information about the system.
Classical mixed states are probability distributions

∑
i pixi.

Quantum information can be non-local

[Roger Penrose, Road to Reality (2004)]

ρAB =
∑
i

λi ψ
A
i ⊗ χB

i
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Classical mixed states are probability distributions

∑
i pixi.

Quantum information can be non-local

[Roger Penrose, Road to Reality (2004)]

ρAB =
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Quantum-data tests General idea

Quantum-data boxes

We regard physical systems (e.g. a single nucleon) as Q-data boxes, i.e.
quantum-information processing devices.

A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]

ψin ρout

p

P

x

M

a

p are classical parameters (e.g. scattering kinematics)

The pure input state is prepared, P : x→ ψin.

The output state is reconstructed via quantum tomography from the
outcomes of projective measurements M : ρout → a.
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Quantum-data tests General idea

Quantum preparation and tomography

Quantum state preparation:

In principle, any quantum state can be prepared via proj. measurements.

Single polarized photons are routinely prepared.

Quantum state tomography:

A mixed state ρout on H is an n× n matrix, with n = dimH.

Take a complete set of projectors {Mi}n
2

i=1 (e.g. {1, σx, σy, σz}).

Make multiple measurements and register {P (aj |Mi)}i,j
The state ρout is estimated from Tr

(
Mi ρout

)
=
∑

j ajP (aj |Mi).

[J. Huwer et al., New J. Phys. 15, 025033 (2013)]
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Quantum-data tests General idea

Quantum-data test

ψin ρout

p

P

x

M

a

A Q-data test consists in probing a given Q-data box with prepared input states.

For every input state ψin one needs to perform the full tomography of ρout.

A Q-data test yields a dataset {ψ(k)
in , p(`); ρ

(k,`)
out }k,`.

The more tomographic measurements, the more reliable the test.

The input ψin is pure, but the output ρout is mixed.
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Quantum-data tests Helstrom test

Example: Helstrom test

Suppose that we have two available inputs ψ1, ψ2.

We choose randomly the input (with probability 1/2).

The task is to guess, which of the two states was input.

Define the success rate:

Psucc(ψ
1, ψ2) := 1

2

2∑
i=1

P (a = i |ψi),

In quantum theory Psucc cannot exceed the Helstrom bound

Psucc ≤ PQM
succ := 1

2

(
1 +

√
1− | 〈ψ1|ψ2〉 |2

)
If Psucc(ρ

1
out, ρ

2
out) > Psucc(ψ

1, ψ2) then the Q-data box is not quantum.

Violation of the Helstrom bound occurs in non-linear modifications of QM.
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Towards an experiment Main idea

Towards an experiment

Main idea:

1 Prepare a ‘quantum-programmed’ particle carrying ψin,
e.g. electron’s spin or photon’s polarization.

2 Scatter it on a nucleonic target.

3 Perform projective measurements on the outgoing projectiles.

4 Reconstruct the output state ρout.

Challenges:

Need to prepare the quantum state of GeV particles.

Abundance of projectiles in high-energy collisions.

Need to measure spin/polarization of individual projectiles.
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Towards an experiment Main idea

Toward an experiment

Use highly-polarized beams
of electrons or photons.

Measure projectively as
many projectiles as
possible.

Post-select the data wrt
particle types and
kinematic parameters.

Reconstruct the output
state for every channel.

ρp1

out

ψin
ρp2

out

ρp3

out

ρp4

out

ρp5

out

ρp6

out
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Towards an experiment Beam scattering

Summary

arXiv:2103.12000

Quantum mechanics can be probed from an ‘outside’ perspective.

The framework is theory-independent.

Implementation through scattering of highly polarized beams.

Need for measuring quantum states of individual projectiles.

Thank you for your attention!
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