Multi-boson measurements in ATLAS

Magdalena Sławińska

IFJ PAN, Kraków

Outline

- Motivation
 - searches for electroweak di-boson production
 - measurements of triple and quatric gauge boson couplings
 - searches for BSM physics in the framework of Standard Model Electroweak Field Theory (SMEFT)
- Vector Boson Scattering
 - two same-sign W bosons accompanied by two jets
 - Z boson pair and two jets
 - photon-induced production of W boson pairs
 - vector boson fusion Higgs production using decays to two W bosons
- Measurement of the four-lepton invariant mass spectrum
- Production of two W bosons and at least one jet

- the Higgs mechanism introduces masses of gauge bosons and their longitudinal polarisations
- W_LW_L scattering amplitude (quatric coupling) diverges with O(s²)

- the Higgs mechanism introduces masses of gauge bosons and their longitudinal polarisations
- W_LW_L scattering amplitude (quatric coupling) diverges with O(s²)
- Gauge bosons interactions partly regularise, leaving O(s) divergence

- the Higgs mechanism introduces masses of gauge bosons and their longitudinal polarisations
- W_LW_L scattering amplitude (quatric coupling) diverges with O(s²)
- Gauge bosons interactions partly regularise, leaving O(s) divergence
- Higgs boson interactions subtract O(s) divergence

- Measurements of (Higgs –) gauge bosons interactions is crucial for confirming the mechanism of electroweak symmetry breaking...
- Observing deviations from the SM couplings means finding new physics
 - anomalous gauge couplings
 - effective field theory (EFT)

Standard Model Effective Field Theory

- BSM fields above Λ =1TeV give rise to higher-dimensions operators that form SMEFT Lagrangian $L_{\rm EFT} = L_{\rm SM} + \sum_{i} \frac{\bar{C}_{i}^{(6)}}{\Lambda^{2}} \mathscr{O}_{i}^{(6)} + \sum_{i} \frac{\bar{C}_{i}^{(8)}}{\Lambda^{4}} \mathscr{O}_{i}^{(8)} + \dots$
- The canonical dimension of SM operators is 4, dim-6 operators suppressed by Λ^{-2} wrt. the SM, dim-8 operators suppressed by Λ^{-4} , ...
- $C_i^{(d)}$ specify the strength of the BSM interactions and are known as Wilson coefficients, $c_i^{(6)} = C_i^{(6)} / \Lambda^{-2}$
- The set of operators of each dimension is renormalizable
- The complete basis of dim-6 operators is known JHEP10(2010) 085

EFT cross-section measurements

- EFT dimension 6 operators implemented in the SMEFTSim package at the leading order
- Predicted cross-sections can be decomposed into:

$$\vec{\sigma}^{\text{pred}} = \vec{\sigma}^{\text{SM}} \times \left(1 + c_i \cdot \vec{\sigma}^{\text{INT}} / \vec{\sigma}^{\text{LO SM}} + c_i^2 \cdot \vec{\sigma}^{\text{BSM}} / \vec{\sigma}^{\text{LO SM}}\right)$$

- The linear (interference) and non-linear (quadratic) EFT contributions
- Quadratic term is of the same dimension as higher-order linear term thus some fit variants do not include it

Vector boson scattering at the LHC

Vector boson scattering at the LHC

- Experimental signature consists of two jets and decay products of 2 gauge bosons (light leptons)
- Contributions from both electro-weak (EW) and chromodynamically (QCD) induced interactions
- Extracting the EW component provides access to gauge bosons self-interactions
- Characteristic kinematical features of EW processes:
 - two forward jets separated with a "rapidity gap"
 - leptons have small rapidities

Feynnam diagrams for $pp \rightarrow ZZjj$ process at leading order

Next To Leading Order cross-sections calculations

- LO contributions:
 - $\mathcal{O}(\alpha^6)$ EW
 - $\mathcal{O}(\alpha_{s}\alpha^{5})$ interference
 - $\mathcal{O}(\alpha_s^2 \alpha^4)$ QCD
- NLO contributions
 - $\mathcal{O}(\alpha^7)$ EW corrections
 - $\mathcal{O}(\alpha_{s}\alpha^{6})$ QCD+EW
 - $\mathcal{O}(\alpha_s^2 \alpha^5)$ QCD+EW
 - $\mathcal{O}(\alpha_s^3 \alpha^4)$ QCD corrections

Beyond the leading order the distinction between EW and QCD contributions is meaningless

State of the art of theory predictions:

- pure NLO QCD predictions computed for:
 - W[±]W[±]j j (*)
 - W[±]Z jj (**)
 - ZZjj (***) and W⁺W⁻ jj (****)
- pure NLO EW corrections computed for:
 - W[±]W[±]j j (*)
 - W[±]Zjj (**)
- QCD+EW corrections:
 - W[±]W[±]j j (*)
 - only $\mathcal{O}(\alpha_{s}\alpha^{6})$ in W[±]Zjj (***), ZZjj (+) and W⁺W⁻ jj (+ +)
 - (*) Biedermann, Denner, Pellen; 1611.02951, 1708.00268
 - (**) Denner, Dittmaier, Maierhoefer, Pellen, Schwan; 1904.00882
 - (***) Campanario et al.; 1305.1623
 - (****) Jaeger, Zanderighi; 1301.1695
 - (+) Jaeger, Karlberg, Zanderighi; 1312.3252
 - (+ +) Greiner et al.; 1202.6004

Measurements at ATLAS

The ATLAS detector

Observation of electroweak same-sign W boson pairs accompanied by two jets 1906.03203

- The W[±]W[±]j j final state has the largest ratio of electroweak to strong production cross sections compared to other VBS diboson processes
- integrated luminosity 36.1 fb⁻¹
- NLO QCD corrections included in EW and QCD W[±]W[±]j j
- The measured fiducial signal cross section is

 $\sigma_{fid.}$ =2.89^{+0.51}_{-0.48} (stat.) ^{+0.29}_{-0.28}(syst.) fb.

	e^+e^+	e^-e^-	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	Combined
WZ	$1.48\pm~0.32$	$1.09\pm~0.27$	11.6 ± 1.9	$7.9~\pm~1.4$	$5.0~\pm~0.7$	$3.4~\pm~0.6$	30 ± 4
Non-prompt	$2.2~\pm~1.1$	$1.2~\pm~0.6$	$5.9~\pm~2.5$	$4.7 ~\pm~ 1.6$	$0.56\pm~0.05$	$0.68\pm~0.13$	15 ± 5
e/γ conversions	$1.6~\pm~0.4$	$1.6~\pm~0.4$	$6.3~\pm~1.6$	$4.3~\pm~1.1$			13.9 ± 2.9
Other prompt	0.16 ± 0.04	0.14 ± 0.04	$0.90\pm~0.20$	$0.63\pm~0.14$	$0.39\pm~0.09$	$0.22\pm~0.05$	$2.4~\pm~0.5$
$W^{\pm}W^{\pm}jj$ strong	0.35 ± 0.13	0.15 ± 0.05	$2.9~\pm~1.0$	1.2 ± 0.4	$1.8~\pm~0.6$	$0.76\pm~0.25$	7.2 ± 2.3
Expected background	5.8 ± 1.4	$4.1~\pm~1.1$	28 ± 4	18.8 ± 2.6	7.7 ± 0.9	$5.1~\pm~0.6$	69 ± 7
$W^{\pm}W^{\pm}jj$ electroweak	$5.6~\pm~1.0$	$2.2~\pm~0.4$	24 ± 5	$9.4~\pm~1.8$	13.4 ± 2.5	$5.1~\pm~1.0$	60 ± 11
Data	10	4	44	28	25	11	122

15

Observation of electroweak production of two jets and a Z-boson pair

arXiv:2004.10612

- 2 final states: 4l jj and 2l2vjj
- integrated luminosity 139 fb⁻¹
- a fully reconstructed final state when both of the Z bosons decay into charged leptons
- VBS ZZ production is sensitive to the possible anomalous interaction between four Z bosons (forbidden at tree-level in the SM)

- small signal rate predicted by the SM, low background
- EW ZZjj signal generated at the LO, QCD-induced ZZjj production includes NLO QCD corrections
- Dominating sources of uncertainties are: data statics, experimental uncertainties related to jet measurements and the background estimate

Electroweak production of ZZjj

The hypothesis of no electroweak production is rejected with a statistical significance of 5.5σ , and the measured cross-section for electroweak production is consistent with the SM prediction.

signal strengths for QCD and EW production

	$\mu_{\rm EW}$	$\mu_{\text{QCD}}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.5 ± 0.4	0.95 ± 0.22	5.5 (3.9) σ
$\ell\ell u u j j$	0.7 ± 0.7	-	$1.2 (1.8) \sigma$
Combined	1.35 ± 0.34	0.96 ± 0.22	5.5 (4.3) σ

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
lllljj	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$1.14 \pm 0.04 (stat) \pm 0.20 (theo)$
llvvjj	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

Observation of photon-induced production of W boson pairs

The signal is sensitive to triple and quartic gauge boson couplings

In the signal events the number of charged particles tracks is expected to be 0

- Modeling of hadronic activity is constrained using Drell-Yan events in data
- Observed significance of 6.7 standard deviations

 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb

• • Measured cross section:

18

Constraining the Higgs boson couplings to longitudinally and transversally polarised W and Z bosons

- Vector boson fusion Higgs production and WW final state
- Integrated luminosity of 36 fb⁻¹
- $a_L = g_{HVLVL}/g_{HVV}$ and $a_T = g_{HVTVT}/g_{HVV}$,
 - in the SM $a_L = a_T = 1$
 - defined in the Higgs rest frame so that only HV_LV_L and HV_TV_T coupling combinations are present (see 1404.5951)
- Anomalous couplings extracted from:
- $\sigma \cdot Br(H \rightarrow WW^*)$
- the distribution of the signed azimuthal angle between two tagging jets $\Delta \Phi_{j\,j}$

di-boson measurements

Measurement of the four-lepton invariant mass spectrum

- The integrated luminosity of 139 fb⁻¹
- Selected events contain two same-flavour opposite-sign lepton pairs.
- Measurements of differential cross-section in the invariant four-lepton mass m₄₁,
- Measurements of double-differential cross-sections with respect to both m₄₁ and the following kinematic variables:
 - the transverse momentum of the four-lepton system p₄₁,
 - the rapidity of the four-lepton system y₄,
 - and a matrix-element discriminant DME

Measurement of the four-lepton invariant mass spectrum

The final state has contributions from a number of processes that dominate in different fourlepton invariant mass regions.

measurement of $Z \rightarrow 4I$ branching fraction

Extracted from the measured fiducial cross-section in the mass bin corresponding to $\ensuremath{m_{Z}}$

Measurement	${\cal B}_{Z ightarrow 4\ell}/10^{-6}$
ATLAS, $\sqrt{s} = 7$ TeV and 8 TeV [8]	$4.31 \pm 0.34 (stat) \pm 0.17 (syst)$
CMS, $\sqrt{s} = 13$ TeV [6]	$4.83^{+0.23}_{-0.22}$ (stat) $^{+0.32}_{-0.29}$ (syst) ± 0.08 (theo) ± 0.12 (lumi)
ATLAS, $\sqrt{s} = 13$ TeV	$4.70 \pm 0.32 ({ m stat}) \pm 0.21 ({ m syst}) \pm 0.14 ({ m lumi})$

Higgs boson measurements using 4 lepton invariant mass

 Constraint on off-shell Higgs boson signal strength

-> from double-differential cross-section measured as a function of m_{41} and the matrix element discriminant D_{ME} ,

- Constraints to tree level Higgs couplings to top quarks (c_t) and to gluons (c_g)

-> from the measured differential cross-section as a function of m_{4I} .

On-shell rates for Higgs production via gluongluon fusion are only sensitive to |ct+cg|², but measurements at higher mass (>180GeV) can be used to probe these parameters independently

Constraints on EFT Wilson coefficients

operators	affecting:
-----------	------------

Higgs-gauge bosons couplings

gauge bosons couplings

 $Z \rightarrow II vertex$

four-fermion contact terms

Only linear term included in the fit (non-linear variant included in the paper as well)

Coefficient Observable		95% CL Expected [TeV $^{-2}$]	95% CL Observed [TeV ⁻²]	
c_{HG} m_{34} VS $m_{4\ell}$		[-0.011, 0.013]	[-0.0090, 0.014]	
$ ilde{c}_{HG}$	m_{34} vs $m_{4\ell}$	-	_	
c_{HD}	m_{34} vs $m_{4\ell}$	[-0.46, 0.44]	[-0.63, 0.28]	
C _{HWB}	m_{34} vs $m_{4\ell}$	[-0.21, 0.20]	[-0.29, 0.13]	
c _{Hd}	$p_{\mathrm{T},12}$ vs $m_{4\ell}$	[-10, 10]	[-3.0, 18]	
c_{Hu}	$ \Delta \phi_{\ell\ell} \operatorname{vs} m_{4\ell}$	[-3.5, 3.7]	[-1.6, 6.2]	
C_{He}	$ \Delta \phi_{ m pairs} \ { m vs} \ m_{4\ell}$	[-0.48, 0.46]	[-0.76, 0.21]	
$c_{Hl}^{(1)}$	$ \Delta \phi_{ m pairs} \ { m vs} \ m_{4\ell}$	[-0.37, 0.38]	[-0.19, 0.57]	
$c_{Hl}^{(3)}$	$ \Delta \phi_{\ell \ell} \operatorname{vs} m_{4\ell}$	[-0.29, 0.28]	[-0.51, 0.12]	
$c_{Hq}^{(1)}$	m_{34} vs $m_{4\ell}$	[-0.81, 0.78]	[-1.1, 0.46]	
$c_{Hq}^{(3)}$	$ \Delta \phi_{ m pairs} \ { m vs} \ m_{4\ell}$	[-0.34, 0.33]	[-0.15, 0.54]	
C _{ed}	m_{34} vs $m_{4\ell}$	[-1.3, 1.8]	[-0.98, 2.3]	
Cee	m_{34} vs $m_{4\ell}$	[-58, 64]	[-27, 100]	
C _{eu}	$m_{4\ell}$	[-0.61, 0.45]	[-0.36, 0.64]	
c_{ld}	m_{34} vs $m_{4\ell}$	[-1.8, 2.5]	[-1.4, 3.0]	
c_{le}	m_{34} vs $m_{4\ell}$	[-63, 68]	[-18, 130]	
c_{ll}	m_{34} vs $m_{4\ell}$	[-39, 43]	[-17,71]	
$c_{ll}^{(1)}$	$ \Delta \phi_{ m pairs} \ { m vs} \ m_{4\ell}$	[-0.33, 0.34]	[-0.17, 0.51]	
$c_{lq}^{(1)}$	$m_{4\ell}$	[-0.77, 0.40]	[-4.1, 0.55]	
$c_{lq}^{(3)}$	m_{34} vs $m_{4\ell}$	[-0.061, 0.083]	[-0.051, 0.098]	
Clu	$m_{4\ell}$	[-1.4, 0.98]	[-0.77, 1.4]	
c_{qe}	$m_{4\ell}$	[-1.1, 0.84]	[-0.67, 1.2]	

WW+jets

WW+j production

Fiducial selection requirements						
p_{T}^{ℓ}	>	27 GeV				
$ \eta^\ell $	<	2.5				
$m_{e\mu}$	>	85 GeV				
p_{T}^{j}	>	30 GeV				
$ y^{j} $	<	4.5				

- The WW+jets cross-section is evaluated in the fiducial phase space of the WW→evµv decay channel
- at least one jet required in the event selection
- Background estimation:
 - Top quark: ttbar from CR, Wt from simulation
 - Drell-Yan from MC (validation region)
 - Fake-lepton backgrounds estimated using a data-driven technique
 - Backgrounds from $WZ, ZZ, W\gamma$ and $Z\gamma$ from simulation
 - triboson background neglected

WW+jets

- The differential crosssections are determined using an iterative Bayesian unfolding method and compared to numerous theory predictions
- Fiducial cross-section and differential cross-section with respect to several kinematical variables related to leptons and jets are measured

WW+ jets

• Limits set on anomalous triple gauge couplings

- Limits set on a single EFT parameter c_w
- Interference between the Standard Model amplitude and the anomalous amplitude enhanced by kinematical selection (p_T^j> 200 GeV)

Table 8: Observed and expected confidence intervals (CI) for c_W for a linearized and a quadratic EFT fit of $m_{e\mu}$, when requiring either jet $p_T > 30$ GeV or jet $p_T > 200$ GeV. The new-physics scale Λ is set to 1 TeV.

	Jet $p_{\rm T}$	Linear only	68% CI obs.	95% CI obs.	68% CI exp.	95% CI exp.
-	> 30 GeV	yes	[-1.64, 2.86]	[-3.85, 4.97]	[-2.30, 2.27]	[-4.53, 4.41]
	> 30 GeV	no	[-0.20, 0.20]	[-0.33, 0.33]	[-0.28, 0.27]	[-0.39, 0.38]
	> 200 GeV	yes	[-0.29, 1.84]	[-1.37, 2.81]	[-1.12, 1.09]	[-2.24, 2.10]
	> 200 GeV	no	[-0.43, 0.46]	[-0.60, 0.58]	[-0.38, 0.33]	[-0.53, 0.48]

Conclusions

- New di-boson measurements at the LHC crucial to fully explore the SM SU(2)xU(1) symmetry structure and EW symmetry breaking
- From first observations of rare EW processes to precision measurements
- Numerous constraints on New Physics using the SMEFT framework
- Interplay between SM and Higgs measurements are starting to be explored
- Most measurements statistically limited so improvements are expected at Run3
- Extensive work, challenges and opportunities ahead to collect quality data and produce quality physics

Backup

rapidity and pseudorapidity

rapidity

$$y=rac{1}{2}\lnrac{E+p_zc}{E-p_zc},$$

pseudorapidity

$$\eta \equiv -\ln igg[an igg(rac{ heta}{2} igg) igg]$$
 $1 \ \ln igg(ert \mathbf{p} ert + p_{
m L} igg)$

$$\eta = rac{1}{2} \ln igg(rac{|\mathbf{p}|+p_{
m L}}{|\mathbf{p}|-p_{
m L}} igg)$$

central region η=0 η=0.5 η=1 n=1.5 n=2n=2.5 forward =3 region -4 θ beam

In the limit $m \rightarrow 0 \eta \rightarrow y$