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In two parts...

1. Lattice gauge theories in the age of quantum technologies

Introduction to the subject

2. Bosonic Schwinger model out of equilibrium
Our work... Phys. Rev. Lett. 124, 180602 (2020)
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Digital simulation
Unitaries are simulated using
quantum gates via Trotter decomposition
In a quantum circuit

Circuit-
Depth

“IBM quantum experience”
https://quantum-computing.ibm.com/

Online q. computing service
Over 20 devices on the service
6 are freely available

Anyone can design and perform digital q.
simulations



https://quantum-computing.ibm.com/
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Quantum simulation: proposed by

Digital simulation Limitations:
Unitaries are simulated using (1) Local Hilbert space dim 1s restricted to 2

sEERIEN SR ER VIR MB U (2) Not scalable in space. Hard to maintain
In a quantum circuit

large number of qubits — loss of quantum
coherence

(3) Not scalable 1n time — Trotter errors —
loss of quantum coherence
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Analog simulation
Interactions of a ‘source system’
(cold atoms, 1on-trap etc.) are tuned
to mimic the physics of a ‘target system’
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Very successful in simulating solid state physics

Solid crystal Optical lattice system

electron ichard Feynman

periodic potential Periodic potential

made by ions made by optical
interference

Analog simulation
Successful in simulating theoretical models, like Interactions of a “source system
Bose-Hubbard model (cold atoms, 1on-trap etc.) are tuned
| Fermi-Hubbard model o mimic the physics of a ‘target system’

. Isotropic Heisenberg model
. Ising model
. And very recently, XXZ model
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7'004 Original Articles
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mimicking condensed matter physics and beyond
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Ultracold Atoms in Optical Lattices: Simulating quantum many-
body systems

Maciej Lewenstein, Anna Sanpera, and Veronica Ahufinger

electron

periodic pote
made by ions

ABSTRACT

Quantum computers, although not yet available on the market, will revolutionise the future of
information processing. Already now, quantum computers of special purpose, i.e., quantum
simulators, are within reach. The physics of ultracold atoms, ions, and molecules offers
unprecedented possibilities of control of quantum many systems, and novel possibilities of
applications for quantum information and quantum metrology. Particularly fascinating is the
possibility of using ultracold atoms in lattices to simulate condensed matter or even high energy
physics. This book provides a comprehensive ove ... More «

Successful 1n si
1. Bose-Hubbs4
2. Fermi-Hubb
3. Isotropic He
4. Ising model BIBLIOGRAPHIC INFORMATION

5 An d veryv re Print publication date: 2012 Print ISBN-13: 9780199573127
. y Published to Oxford Scholarship Online: December 2013 DOI:10.1093/acprof:0s0/9780199573127.001.0001

ULTRACOLD ATOMS

OPTICAL LATTICES

Keywords: ultracold atomic gases, molecular gases, quantum simulators, optical lattices, atomic systems, many-
body physics
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In two parts...

1. Lattice gauge theories in the age of quantum technologies

Quantum simulation: proposed by Yuri Manin and Richard Feynman

Digital simulation Analog simulation
Unitaries are simulated using Interactions of a ‘source system’
quantum gates via Trotter decomposition (cold atoms, ion-trap etc.) are tuned
In a quantum circuit so that it can mimic the physics of a ‘target system’

Natural question: Can we

simulate gauge theories that
describe high-energy physics?
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: y Physics (the action) remains invariant
Symmetries

e Global symmetries =% Physics remain unchanged after transformation

e.g. Noether’s (first) theorem
1. Translational symmetry: y(x) — l/{(x + a) =% Momentum conserved
2. Phase symmetry in QM: y(x) — e'*y(x) == Total probability conserved, continuity eq

* Local (gauge) symmetries === Exactly same system before and after transformation
3, Fr = J¥

5 cHOIE. — ) r,=0,A,—-0,A4, % Invariant under A, (x) > A, (x) + 9,a(x)
ut oni T
“Technically’ not a symmetry
Then why not?? Just a redundancy in our description
Can’t be broken spontaneously (Elitzur's theorem)

V.E=p Noether’s (first) theorem not applicable
V.B=0 i85 Instead we get Gauss law
VXE=-—

ot

VxB=J+ aa_E —P Turns out to be very difficult to work with, especially in QED
t
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g

0 o
dc“7E, =0

... U(1) gauge theory

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
I Il I
| i @ '@ @ || @ |: H
(Quantum) Gauge theories came in the form of quantum up || charm || top guon | niggs
electrodynamics, non-Abelian Yang-Mills theories etc. “a e la
¥ w Y 1 Y

down strange bottom photon '}

Standard model of particle physics 1s a non-Abelian gauge
theory with the symmetry group U(1) x SU(2) x SU(3). @ I'® |F @ || @
electron muon tau Z bOSD

5 Ve 1% VP % Va i W

electron muon tau
neutrino neutrino neutrino
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(Classical) Gauge theories existed since mid-19th century...

g =T
U
... U(1) gauge theory
pvon iin
2, Fs, =0
Standard Model of Elementary Particles
three ger(1feer'ramtiit:)r:“ss )of matter interactio(rll)sols :’onr:)e carriers
| Il 1]
' i @ i@ |- € . @ |- H
(Quantum) Gauge theories came in the form of quantum uw || cham || top alion || higgs
electrodynamics, non-Abelian Yang-Mills theories etc. “a e la
" w % 1 Y/
down strange bottom photon |
Standard model of particle physics is a non-Abelian gauge
theory with the symmetry group U(1) x SU(2) x SU(3). @ |9 |9 || @
electron muon tau Z boson

<2.2 eVic? <0.17 MeV/c2 <18.2 MeV/c? =80.39 GeV/c?

@ 1It® I-® | @

]
electn:on muon tau_ W boson
neutrino neutrino neutrino i

Perturbative approaches failed to explain “‘confinement of quarks’ to form composite hadrons,
which works at the non-perturbative limit of low energies and/or large distances



Hadrons

Free quarks are not seen naturally...

Mesons

interactions / force carriers

(bosons)
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um § up E charm top gluon higgs
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-4 e ] 0
‘@ IO O || @
L down L strange bottom photon
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Lattice gauge theory (LGT) on Euclidean space-time

PHYSICAL REVIEW D VOLUME 10, NUMBER 8 15 OCTOBER 1974

Confinement of quarks*

Kenneth G. Wilson
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850
(Received 12 June 1974)

| A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires
the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge ficld theory
on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge
fields as angular variables (which makes a gauge-fixing term unnecessary). The lattice gauge theory has
a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free
quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The
strong-coupling expansion involves sums over all quark paths and sums over all surfaces (on the lattice)
joining quark paths. This structure is reminiscent of relativistic string models of hadrons.
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Lattice gauge theory (LGT) on Euclidean space-time Hamiltonian formulation of LGT

PHYSICAL REVIEW D VOLUME 10, NUMBER 8 15 OCTOBER 1974 PHYSICAL REVIEW D VOLUME 11, NUMBER 2 15 JANUARY 1975

Confinement of quarks* Hamiltonian formulation of Wilson’s lattice gauge theories
John Kogut*

Kenneth G. Wilson Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850
(Received 12 June 1974) Leonard Susskind'

Belfer Graduate School of Science, Yeshiva University, New York, New York
and Tel Aviv University, Ramat Aviv, Israel
and Laboratory of Nuclear Studies, Cornell University, Ithaca, New York
(Received 9 July 1974)

A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires
the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge ficld theory
on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge
fields as angular variables (which makes a gauge-fixing term unnecessary). The lattice gauge theory has

a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free Wilson’s lattice gauge model is presented as a canonical Hamiltonian theory. The structure of the
quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The model is reduced to the interactions of an infinite collection of coupled rigid rotators. The
strong-coupling expansion involves sums over all quark paths and sums over all surfaces (on the lattice) gauge-invariant configuration space consists of a collection of strings with quarks at their ends. The
joining quark paths. This structure is reminiscent of relativistic string models of hadrons strings are lines of non-Abelian electric flux. In the strong-coupling limit the dynamics is best described

in terms of these strings. Quark confinement is a result of the inability to break a string without
producing a pair.
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fields as angular variables (which makes a gauge-fixing term unnecessary). The lattice gauge theory has
a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free
quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The
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Wilson’s lattice gauge model is presented as a canonical Hamiltonian theory. The structure of the
model is reduced to the interactions of an infinite collection of coupled rigid rotators. The
gauge-invariant configuration space consists of a collection of strings with quarks at their ends. The
strings are lines of non-Abelian electric flux. In the strong-coupling limit the dynamics is best described
in terms of these strings. Quark confinement is a result of the inability to break a string without
producing a pair.

1 p—— m—

Opened up new possibilities to approach
non-perturbative limits. ..

Since then Monte-Carlo simulations have
been used to study various facets of high
energy physics

on lattice...
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been used to study various facets of high
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Eg. Dirac Lagrangian
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On lattice... Hamiltonian picture...
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l//;l//n#c S l//; V; Vn+121//n+fc

Minimal coupling...
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1 8y
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== l//; Un,fcl//n+12

+ gauge-invariant kinetic
and interaction terms for gauge fields
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In present days... form low-energy perspective...

Advancements in quantum simulation
(digital + analog)

nature First proof of concept

Real-time dynamics of lattice gauge
. theories with a few-qubit quantum
computer

Esteban A. Martinez -, Christine A. Muschik-, Philipp Schindler, Daniel Nigg, Alexander
Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller & iaias
Blatt

| Nature 534, 516-519 (23 June 2016) = Download Citation SChWingel’ mechanism “Observed”
for the first time in Lab

Vacuum polarization under STRONG E .M. field
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Real-time dynamics of lattice gauge
theories with a few-qubit quantum
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Esteban A. Martinez B Christine A. Muschik ™, Philipp Schindler, Daniel Nigg, Alexander
Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller & Rainer
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Nature 534, 516-519 (23 June 2016) Download Citation

New experimental results
and propositions are coming
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Gauge theories on lattice

In present days... form low-energy perspective...

Advancements in quantum simulation Recent developments in tensor network
(digital + analog) methods (Classical simulation of q. systems)
nature S R .
1. Hamiltonian formulation

e ez . 2. Access to state or wave-function

Real-time dynamics of lattice gauge

theories with a few-qubit quantum 3. Entanglement entropy becomes almost free
computer 4. No sign problem

e, s oy, il HouksMiecalo s hmas ez, P Zolar .o 5. Real-time dynamics

Blatt

Nature 534, 516-519 (23 June 2016) Download Citation

For fermionic Schwinger model (QED in 1+1 D)...

J. High Energy Phys. 11, 158 (2013)

Phys. Rev. A 90, 042305 (2014)

Phys. Rev. Lett. 113, 091601 (2014)

Phys. Rev. D 92, 034519 (2015)

Phys. Rev. D 94, 085018 (2016)

Phys. Rev. X 6,011023 (2016)  Worked pertectly where
Phys. Rev. X 6,041040 (2016) QMC fails

Phys. Rev. D 96, 114501 (2017) There are also studies in
NOT COMPLETE... non-Abelian GT in 1+1

[—

New experimental results
and propositions are coming

Long-term goal being the scalable simulation
of non-Abelian theories
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Long-term goal being the scalable simulation
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Recent developments in tensor network
methods (Classical simulation of q. systems)

Hamiltonian formulation

Access to state or wave-function
Entanglement entropy becomes almost free
. No sign problem

. Real-time dynamics

N

In 2d41-D...

Some advancement using PEPS
But finite PEPS is computationally very hard

A new way forward = Tensor network + MC
(Zohar, Cirac PRD 2018, and upcoming papers)
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Outline

In two parts...

1. Lattice gauge theories in the age of quantum technologies

Introduction to the subject

2. Bosonic Schwinger model out of equilibrium
Our work... Phys. Rev. Lett. 124, 180602 (2020)
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Scalar, c...
J
Vector, VJ <
i J
Matrix, M;;...

Tensor, 1.




Tensor network algorithms
1D TN — matrix product states (MPS)

Scalar ¢ Vector multiplication, ZMZJVJ - :
g
Vector, V V ] n |
CCLOr, b Trace of matriX, Z Mii- .

]

Matrix, M;... ABCD. .. B E
[

; k

Tensor, 1. |
SVD,M = USV...




Tensor network algorithms
1D TN — matrix product states (MPS)

|y) = Z Ci1i2i3...iN|i1i2i3°"iN>

SE SEmATe
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Tensor network algorithms
1D TN — matrix product states (MPS)

|y) = Z Ci1i2i3...iN|ili2i3“'iN>

[15019,03. 50y

i bgls s ey

Bond dimension
] dN/2



Tensor network algorithms
1D TN — matrix product states (MPS)

|y) = Z Ci1i2i3...iN|ili2i3“'iN>

SE SEmATe

ll 12 l3 l4 15 ®

Bond dimension
] dN/2

Basic idea: MPS with finite bond dimension as an ansatz for many-body wavetunction

Equilibrium physics Out-of-equilibrium dynamics
Ground state or low-lying excited states 1. Time-evolving block decimation (TEBD), or

tDMRG via Trotter decomposition (~2004)
1. Density matrix renormalization group (DMRG)

2. One-site variational eigenstate search, with or 9K Tangent_space method of time_dependent

without subspace expansion variational principle (TDVP) (2011 - 2016)
(colloquially, one-site DMRG )



Introduction
The Bosonic Schwinger Model

Our work — Out-of-equilibrium dynamics of bosonic Schwinger model

e Qut-of-equilibrium dynamics are hard to simulate numerically. Tensor network shows a way
forward.
e Important for understanding of important questions such as
matter, the presence or absence of thermalization.
* Bosonic Schwinger model: Matter particles are also bR IS TG B EIG v RO RYQITHD R
1. many works have been done with fermionidRRCEEIEEEIIELTO RV SRR VS

2. ultra-cold atomic experiments with bosons

the existence of new phases of

Not possible in experiments

Goal:
1. Signatures of confinement out-of-equilibrium,

easier to experimentally verify confinement.
2. Lack of thermalization and slow dynamics due
to confinement.




Introduction
The Bosonic Schwinger Model

Our work — Out-of-equilibrium dynamics of bosonic Schwinger model

e Out-of-equilibrium dynamics are hard to simulate numerically. Tensor network shows a way
forward.
e Important for understanding of important questions such as the existence of new phases of
matter, the presence or absence of thermalization. Thermalization = described by only one
* Bosonic Schwinger model: Matter particles are also be parameter (temperature, T)
1. many works have been done with fermioni no memory of the initial state
2. ultra-cold atomic experiments with bosons

Lack-of-thermalization = retains memory of
the initial state
Very useful in quantum technologies
€.g. engineering quantum memory

Goal:

1. Signatures of confinement out-of-equilibrium,
easier to experimentally verify confinement.

2. Lack of thermalization and slow dynamics due
to confinement.



The model

The Bosonic Schwinger Model

' 1
& =—-|D,¢| D*¢p —m?|p|° ——F, F*"

Metric convention = (-1,1,1,1) or (-1,1)

Prescription for discretization:

Fix temporal gauge A (x, ) = 0 in 1+1 dimension

Canonical quantization, get the Hamiltonian in continuum

Discretize the Hamiltonian on a lattice with spacing a

Discretization is such that matter fields sit on lattice sites, gauge fields on bonds
Some simplifications

e e



The model

The Bosonic Schwinger Model

Hamiltonian after discretization... x = l/g
1/2 3/2

A A 2 SR BN o5 X Ll

H= ZLJ.2+2<x<(m/6]) +2x>> 2 (ala; +b;bT) - << )2 )1,22[ 1) Ui(@; + b)) +h.c.]
J j mlq) + 2x J
Electrlc fields
Particles &j / L], U, UT
8 NV : NV : JAVAVAVAVAVA : -------

AL =L wWith Le [ =20 — 1,001, 2, 1.
U;l1y = 15,- 1)

Oi1L) = |+ 1)

L, U] = -0

22



The model

The Bosonic Schwinger Model

Hamiltonian after discretization... =11y a-q

i - ] 172 g} 32 T 5 -
A=Y 024 <x((m/q) +2x>> 3 (@l + b)) - 3 [(al, + byur) O+ BY) + ]

J J <(m/q) +2x) J
Electrlc fields
Particles d; _*. z L], U, UJr
‘ I““ .A.“ ...0 .
NV . NV JAVAVAVAVAVA ‘ -------
¢

i L) = L), with [ € [ T e
016y = 1= 1)
018y = 14+ 1)
1, )= -0,

201



The model

The Bosonic Schwinger Model

Hamiltonian after discretization...

x=llgyg

1/2 372
ﬁzzz;+z<x((m/q)z+zx)> Sata it S P e

J

) J

J <(m/q) +2x) J

Electric fields
Particles d; “‘*.. iy L, U, UT
i S % o
AAAVAVATA

AVAVAAVAVA

v

Corresponding Gauss law generators...

A Ve

. . “HiEm ang SanEREE
J a5l G=L-L ;- <Ja] bb)

J 7

A

0;

201

We restrict ourself to (A;j ly) = 0 sector for Vj Dynamical charge: Particle—anti-particle

number difference



The model

Comment on the ground state /\
Free theory...

Dispersion relation without gauge fields (Klein-Gordon theory)... Excitations are free  or

w(k) = 24/xm?/q* + 2x*(1 — cos ka)

lim w(k) = V k% + m? Gapless 1n massless scenario
a—
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Comment on the ground state

Dispersion relation without gauge fields (Klein-Gordon theory)...

w(k) = 24/xm?/q* + 2x*(1 — cos ka)

liII(l) w(k) = \/ k? 4+ m? Confined theory...

Excitations are... @

In the bosonic Schwinger model:
1. Excitations are not free particles, but bound
particle-antiparticle pairs (mesons).



The model

Comment on the ground state

Dispersion relation without gauge fields (Klein-Gordon theory)...

w(k) = 24/xm?/q* + 2x*(1 — cos ka)

1iII(l) w(k) =\ k2 + m? Confined theory...

Excitations are...

In the bosonic Schwinger model:
1. Excitations are not free particles, but bound
particle-antiparticle pairs (mesons).
2. A finite mass-gap is generated due to matter-
gauge coupling.

. Mass-gap, M/q = (E, — Ey)/4\/x > mlq.
4. Extra energy, Ex/q = M/qg — m/q, arises as
binding energy required to tether particle-

antiparticle pairs into mesons.

(O]



The model

Comment on the ground state

Dispersion relation without gauge fields (Klein-Gordon theory)...

w(k) = 24/xm?/q* + 2x*(1 — cos ka)

lim w(k) = V k2 + m>
a—0

In the bosonic Schwinger model.:

1.

2.

Excitations are not free particles, but bound
particle-antiparticle pairs (mesons).

A finite mass-gap 1s generated due to matter-
gauge coupling.

. Mass-gap, M/q = (£, — EO)/4\/)_C > mlq.
. Extra energy, Eg/q = M/q — m/q, arises as

binding energy required to tether particle-
antiparticle pairs into mesons.

. Ground state 1s always gapped with finite

correlations.

1.75+
1.50
S
1.25+
<
Eﬂs 1.00 1 A A
- 0.75 -9 +m?q:0
m/q = 0.25
& 0.501 —V—m?q =05
] —4—m/q=
0.2 —»>—m/q=12

0.00

QN VD WD b‘\%%@/'q@z@@@,@é\

Energy levels

10-'{(b) w4 -

1073 ‘7 N

107° s

10—7 ./

1079 - m/q=

10_11 m/q =0.25
¥ m/q=0.5

10713 — m/q=

10-15- +>— m/q=12

1 10 20 30 40 50
Site j

60




Time evolution

We excite the system out of equilibrium via the non-local operator...

S+R
pEERyAvT ; il (4 A

Creates unit opposite charges separated by a distance of 2R+1 connected by a string of electric field
i.e., an extended meson

Initial state = |w(t = 0)) = /VMR | Q)
with extra energy = ~ 2R+ 1)+ 4 (x((m/ q)* + 2x)

) 1/2



Time evolution

We excite the system out of equilibrium

Creates unit opposite charges separated | @ \ Y
E
=

i.e., an extended meson o NN RN Be U S N S XX XU N -
: a2t aC NN Sup SV S8 U S SX N R NN S
Initial state = |y (t = 0)) = S/ My | Q) \w | S0 GOV 4R 4
! | SRR e S S cog N
with extra energy = ~ 2R+ 1) + 4 (x((, AMp=Ams=ny Mg -y

A U B W N =

Light-cone bends.

Coherent oscillation of the string.
Partial string breaking.

String inversion.

Radiation of lighter mesons.

. Two domains — confined core

and deconfined outer region. (@ e ( N
Slow depletion of coh T ey
. Slow depletion of coherent core. O neson\@) minted




4 A N = 60 sites, N-1 = 59 bonds,R =5
Time evolution

Particle and gauge sector

(L;) (@)
59 1 60 1
- 0.2 0.2
451 15
= : =
< R 2 004 R DEEEST -0.02 = O
S 15 15 ' g =
1 1 - - 3 ch:
o H9 TanlE A
&\ _ o
= o 451 @D IRAT)
< 35 o &
[ 2 =
> M 2 — 5
S . _ oda X . : o
59
)_Q. .
S 451
| z ;g
@ -
~ A 151 |
s 1 .
59
a .
~ 451 |
“ % 35 - - ]
E CQ ?g_ _ S
S 1 Rl 1 —— |’
0 4 8 12 16 20 0 4 8 12 16 20

Time t Time t




Time evolution

Particle and gauge sector

(L;)

59

45
35
25
15+

1
59
45
35
25
15+

1

it
45i
|

35
25

0 4 8 12 16 20
Time t

Bonds

m/q =10

Bonds

¢

m/q = 0.25

Bonds

151
1
59

45
39
25
151

1

m/q = 0.5

Bonds

m/q =12

E 36 g

+—
i 25

N = 60 sites, N-1 = 59 bonds, R = 5

Concentration of bosons in
confined core vanishes at ¢t = 10

Two domains are clearly visible

B oo Almost perfect periodic oscillation
0O 4 8 12 16 20
Time t



4 A N = 60 sites, N-1 = 59 bonds, R = 5
Time evolution

Entanglement dynamics

BSM (with 3°. L?) KG (without Y. L?) In the Klein-Gordon scenario:
3.0 Bg 1. Entanglement spreads ballistically
! >0 100 from the beginning.
Sy 15 0.75 F 2. Memory effect apparentl
N 0 . Iy PP ¥
S é'g 07 disappears
0.0 Wo.00f 3. Thermalization in the generalized
2 20 o sense.
: 2.5
- 50 1.00
I ' 0.75
1.5
- 1.0 0.50
\ .
< 0.5 0.25
0.0 L0.00
3.0
0 1.2
= 2.5 n
I - 0.8
- 0.6
= 1.0 0.4
S 0.5 0.2
0.0 0.0
0.90 o
N .
— 0 1.0
0.60
I 0.8
0.45 0e
= 0.30 0.4
S 0.15 0.2
o 0.00 — 0.0
0 4 8 12 16 20 0 4 8 12 16 20

Time t Time ¢




4 A N = 60 sites, N-1 = 59 bonds, R = 5
Time evolution

Entanglement dynamics

BSM (with 3~ L?) KG (without >~ L?) In the Klein-Gordon scenario:

150 £ 1, Entanglement spreads ballistically
1.25 BRR

1 00 from the beginning.

0.75 f 2. Memory effect apparently

ggg disappears

0.00} 3. Thermalization in the generalized

SCNSC.

1.25
1.00
0.75

0.50 : :
0.25 | In the bosonic Schwinger model:

I A I A A A e e I T N
SUTOUTOUTO DUDUOUTD DUTOUTD UTO

n
n
|

i 0.00 F 1. Imitial spreading of entanglement
1.2 Y ,
1.0 | 2. Starts to spread ballistically in
" correspondence with the radiation
8-421 of lighter mesons (for lower
0.0 masses).
0.90 ) 3. Entanglement stays concentrated in
RS 8 gg 10 the confined core, even long after
T 354 0.8 '
I 2ol m gj 0.5 08 the accumulation of bosons
= 5 0.4 disappears.
S Do 02 F 4. st ffect
] 0.00 - 00 . Strong memory effect.
0 4 8 12 16 20 0 4 8 12 16 2

Time t Time ¢




5| i N = 60 sites, N-1 = 59 bonds, R = 5
Time evolution

Entanglement dynamics: Classical vs. distillable

Due to global U(l) symmetry...
p=Ds,= Dr, »,
0 Q

with P = Tr [ﬁQ] and pi= ﬁQ/pQ

S(p) = —ZPQIHPQ 7 ZonS’(pQ)
0 0

s¢ (classical) s¢ (distillable)



4 A N = 60 sites, N-1 = 59 bonds, R = 5
Time evolution

Entanglement dynamics: Classical vs. distillable

Classical: S¢ — S¢(|Q)) Distillable: 8¢ — S9(|Q))

Due to global U(l) symmetry...

59 9
0.75 .
5 v ?
025 2 os 1.2 p=@pg=@pgpg
030 M@
15 0.8 0 0
0.15 0.4
0.00 1 0.0 : _T | e
59 with p,=Tr [pQ] and p,=p,p,
0.75 - 361
0B g 1.6
045 & 7]
Q 951 1.2
030 & 7] 08
0.1 04 b & =—Z Inp + Z S
0.00 1 0.0 (p) - o mE ey . p,Sp,)
- 2.4 ‘
0.60 %g s¢ (classical)  s¢ (distillable)
0.45 1.9
0.30 0.8
0.15 0.4
0.00 0.0
~ 0.6 040 F The classical part of the entropy remains
~ 8 W/ O "1 sharply confined to the confined
| 7535_.% 0.4 5 0.04 | Snarply confined to the confined core,
= A %g - : Wos g 0.16 | thereby demarcating confined domain
S 1 0.1 1 8'83 from the deconfined one.
0 4 8 12 16 20 0 4 8 12 16 20

Time ¢ Time t




L.ack of thermalization

Thermalization

(O (1)) — O .. .. ast— co... Described by only one parameter (7)... no memory

&' () should grow proportional to the bipartition size for sufficiently long ¢



Lack of thermalization

Thermalization

(O(w()) = O,.. . ast— oo... Described by only one parameter (7)... no memory

&' (¢) should grow proportional to the bipartition size for sufficiently long ¢

Expectation...

A

T 'MWM&W’ — DeCOIlﬁIled domam
":\‘/\‘/\Q/\Qﬂ;'x W

L8| TR A || _> Populated by free lighter mesons.
| @% | ....,A::,.. .\/,,:.\, ......

SR SRR A A Should thermalize.
Py 4P Should show volume-law of entropy.

%)
.E N N S N L T X
'Emw b wwf Confined domain.
R Y N e s L 22 T\ & : :
| 'Wmm o ebe anes Coherent oscillations.

Memory effect.

Should remain non-thermal.

Entropy should not grow proportional
to the bipartition size, but slower.




Lack of thermalization

N = 60, 90, 120 sites, with R = N/10
Extensive energy in the initial state: required for thermalization

Time




Lack of thermalization

N = 60, 90, 120 sites, with R = N/10

Extensive energy in the initial state: required for thermaliz a

Time

1.57
1.01
0.51

0.0
1

= m/q =1
-=-m/q=12
- mfq =2

SN /

2 5 10 20 50 100 200
Time t

Higher mass

m/q = 0.25

—— N=60
—== N=280
—-— N =100

0O 5 10 15 20
Time t

30

CSJAV

smEas|
Thp

N/I2+R

Z S; =P Shows perfect area-law

j=NI2—R




Lack of thermalization

N = 60, 90, 120 sites, with R = N/10
Extensive energy in the initial state: required for thermalization

— N=60,N/j=4 ==+ N=80,N/j=4 — N =100, N/j =4
N=60,N/j=5 == N=80,N/j=5 —- N =100, N/j =5
m/q =10 m/q = 0.25
20.0 - = o -
= (a) 4 = 61(b) =
o 17.57

4 ) . i %O 5' e TN
- -" ) O = 15.07 - 7
BRERC==aliitirs ——12.51 : P ~
g% I — .::‘\Mm:’ ...... %O . %O 3_

N A~~~ AR - ] -

Q?\Q? \\ K ‘: iy - . // . N——— 75 \_/2_

Nl IR FURFPS O vl * o0 a=0093 8=132 o a=0.94, 6=06
\Wo\awl ' 25iE , | | » 1EET | | |
NS 9 66 s 600/ 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

) 9 0 S e GO - -~ 0 G609 . . . .
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For fixed N:

1. Sub-linear in j for small ;.
2. Linear for intermediate j: volume-law.
3. Super-linear before saturating into the confined domain.




To summarize...
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11. Almost thermal outer region (for lower masses)
or vacuum (higher masses).

Open questions...

1. Whether such exotic non-thermal states persists at very very long time. Can be answered
by next generation tensor-network algorithms or quantum simulations.

2. Origin of the lack-of-thermalization/slow-dynamics in confining theories.
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