# Recent Higgs boson measurements at the LHC



#### Mateusz Dyndal

AGH University of Science and Technology in Krakow





#### Outline

- Introduction
- Higgs mass measurements
- Higgs cross section measurements
- Combined measurements of Higgs coupling parameters
- Measurements of CP structure of Higgs boson couplings
- Recent searches of Higgs to invisible decay
- Search for di-Higgs production
- Search for  $H \rightarrow cc$  decay
- Evidence for Higgs to muon pair decay
- Search for Higgs to two leptons + photon decay
- Future prospects

\*not covering all topics, only selected recent updates are presented



### The ATLAS and CMS detectors at the LHC

#### • Two general-purpose particle physics experiments

 $\bullet$ 



Designed to exploit the full discovery potential and vast range of physics opportunities that LHC provides

# ATLAS and CMS Run 2 period (2015-2018)

- luminosity at pp 13 TeV centre-of-mass energy in full Run 2 period
  - Big thanks to the CERN accelerator team for the excellent LHC performance!

CMS Integrated Luminosity, pp,  $\sqrt{s} = 13$  TeV



# ATLAS and CMS experiments have each successfully collected ~140 fb<sup>-1</sup>



### **ATLAS and CMS detectors performance**

- Good understanding of the detector is critical
- careful data-driven calibrations
- Several improvements during the last years using machine learning techniques (e.g. b-tagging,  $\tau$ -identification,...)



• Reconstruction of physics objects (e,  $\gamma$ ,  $\mu$ ,  $\tau$ , jets, ...) precisely known from



#### CMS-DP-2019-033

#### The Higgs boson

#### It is the only fundamental scalar with spin 0 we have seen so far



Discovery allows to access a new sector in the Lagrangian:

- <u>Scalar-Gauge boson</u> interactions
- Yukawa couplings (new type of interaction)
- <u>Higgs potential:</u> cornerstone of BEH mechanism, not yet probed experimentally



#### Higgs boson production and decay at the LHC







#### Higgs boson observation timeline at the LHC Large Hadron Collider (LHC) HL-LHC



![](_page_7_Picture_2.jpeg)

### Higgs boson mass measurements

- Run 1 (ATLAS+CMS): m<sub>H</sub> = 125.09 ±0.21(stat) ±0.11(syst) GeV (0.2% precision) Phys.Rev.Lett. 114 (2015) 191803
- ATLAS Run 2 measurement  $H \rightarrow ZZ \rightarrow 4I$  (139 fb<sup>-1</sup>)
  - $m_H = 124.92 \pm 0.21 \text{ GeV}$ ATLAS-CONF-2020-005
- CMS Run 2 measurement in  $H \rightarrow \gamma \gamma$  and  $H \rightarrow ZZ \rightarrow 4I$  (36 fb<sup>-1</sup>), in combination with CMS Run 1 measurements:
  - $m_{\rm H} = 125.38 \pm 0.14 \, {\rm GeV}$ Phys. Lett. B 805 (2020) 135425
  - Most precise measurement at present (0.11%)
- Measurements still dominated by statistical uncertainty

![](_page_8_Figure_8.jpeg)

## **Higgs signal strength measurements**

![](_page_9_Figure_5.jpeg)

 $\sigma \times B$  normalized to SM

+ 0.08 )

+ 0.47 - 0.39

 $\pm 0.05$ 

+ 0.18

-0.15

+ 0.12

- 0.08

± 0.21

+0.40

- 0.35

+0.38

-0.24

+0.12

+0.11

-0.09

+ 0.28

-0.21

+0.14 -0.12

+0.12

+0.09

-0.06

+ 0.38

-0.34

+ 0.70

-0.57 + 0.52

-0.51

+ 0.14

-0.13

![](_page_9_Picture_7.jpeg)

### **Higgs cross section measurements**

- - Total Higgs boson production cross section at 13 TeV is 55.4 ±3.1(stat) ±2.9(syst) pb
  - In agreement with the Standard Model prediction  $\bullet$

![](_page_10_Figure_4.jpeg)

# Inclusive cross-section measurement in γγ and ZZ channels at 7, 8 and 13 TeV

ATLAS-CONF-2019-032

![](_page_10_Figure_7.jpeg)

### **Higgs cross section measurements**

#### • Differential cross-section measurements in Higgs $p_T$ , Higgs rapidity and $N_{jets}$

• Combination of  $H \rightarrow \gamma \gamma$ , ZZ (and bb) channels

![](_page_11_Figure_3.jpeg)

![](_page_11_Figure_4.jpeg)

#### Higgs cross section measurements

#### - Differential cross-section measurements in Higgs $p_T$ , Higgs rapidity and $N_{jets}$

![](_page_12_Figure_2.jpeg)

Phys. Lett. B 792 (2019) 369

![](_page_12_Figure_4.jpeg)

## Simplified Template Cross-Sections (STXS)

- template with the goal of:

  - different decay channels

![](_page_13_Figure_6.jpeg)

arXiv:1605.04692, arXiv:1906.02754, arXiv:2003.01700

### **Higgs STXS measurements**

 Good agreement between data and SM so far, in particular in high-p **BSM-sensitive bins** 

CMS yy

![](_page_14_Figure_3.jpeg)

CMS-PAS-HIG-19-015

![](_page_14_Figure_6.jpeg)

• ATLAS (combination)

### **Higgs STXS measurements**

#### Do not forget about (quite spectacular!) correlation matrix $\bullet$

|                                                                  | <b>ATLAS</b> Prelim                                                                  | ninary <sub>m</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | √ <i>s</i> = 13 TeV, 139<br><sub>/</sub> = 125.09 GeV,   <i>y</i> <sub>µ</sub>   <             | fb <sup>₋1</sup><br>2.5 |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------|
| 0-iet, $p^H < 10$ GeV                                            |                                                                                      | 0 00 0 04 0 03 0 02 0 11 0 09 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                         |
| 0-jet, $p_T < 10 \text{ GeV}$                                    |                                                                                      | 0.050 02 0.02 0.02 0.11 0.09 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                | · >                     |
| 1-iet, $p_T^H < 60 \text{ GeV}$                                  | 0.02-0.28 1 0 13 0 12-0.040 020 03 0 05 0 02 0 024                                   | 0.310 04 0 03 0 04 0 11 0 06 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                         |
| 1-jet, $60 \le p_{-}^{H} < 120 \text{ GeV}$                      | 0.07 0.26 0.13 1 0.29-0.210.10 0.02 0.24 0.08 0.08                                   | 0.460.02 0.02 0.08 0.18 0.11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .07 0.06 0.07 0.08 0.01 0.08 0.07 0.03 0.05 0.05 0.05 0.01 0.28 0.08                           | $-0.8 \times$           |
| 1-jet, 120 ≤ <i>p</i> <sup><i>H</i></sup> < 200 GeV              | 0.03 0.14 0.12 0.29 1 -0.030.070.01 0.14 0.05 0.05                                   | 0.440.00 0.02 0.04 0.09 0.05 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03 0 02 0 02 0 03 0 00 0 03 0 02 0 01 0 02 0 02                                                |                         |
| et, $m_{ii} < 350 \text{ GeV}, p_{-}^{H} < 120 \text{ GeV}$      | 0.03-0.06-0.04-0.21-0.03 1 0.17 0.01 0.13 0.11 0.06                                  | 0.01-0.46-0.18 0.01 0.00-0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .01 0.01 0.01 0.01 0.00 0.01 0.01 0.01                                                         |                         |
| < 350 GeV, 120 $\leq p_{\tau}^{H}$ < 200 GeV                     | 0.02 0.13-0.020.10-0.07 0.17 1 0.00 0.23 0.15 0.11                                   | 0.01-0.48-0.28 0.04 0.02 0.01 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .03 0.03 0.04 0.04+0.01 0.03 0.04 0.02 0.03 0.03 0.04+0.01+0.15+0.04                           | -0.6                    |
| et, $m_{ii} \ge 350 \text{ GeV}, p_{\tau}^{H} < 200 \text{ GeV}$ | 0.07 0.03 0.03 0.02 0.01 0.01 0.00 1 0.08 0.05 0.06                                  | 0.03-0.05 0.04-0.46 0.20 0.04 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .05 0.04 0.04 0.04 0.01 0.05 0.04 0.03 0.05 0.06 0.08 0.06 0.17 0.05                           |                         |
| $200 \le p_{\tau}^{H} < 300 \text{ GeV}$                         | 0.07 0.22 0.05 0.24 0.14 0.13 0.23 0.08 1 0.10 0.12                                  | 0.15-0.26-0.17 0.06 0.13-0.05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .08 0.08 0.06 0.07 0.01 0.07 0.06 0.04 0.06 0.07 0.07 0.03 0.32 0.07                           |                         |
| $300 \le p_{\tau}^{H} < 450 \text{ GeV}$                         | 0.01 0.06 0.02 0.08 0.05 0.11 0.15 0.05 0.10 1 0.05                                  | 0.07-0.20-0.10 0.01 0.01-0.09.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .01 0.02 0.01 0.01 0.00 0.01 0.01 0.02 0.02                                                    | -0.4                    |
| <i>p<sub>T</sub><sup>H</sup></i> ≥ 450 GeV                       | 0.03 0.08 0.02 0.08 0.05 0.06 0.11 0.06 0.12 0.05 1                                  | 0.04-0.11-0.010.02 0.06-0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .03 0.03 0.03 0.04 0.00 0.04 0.04 0.02 0.03 0.05 0.03 0.01 0.14 0.04                           | ••••                    |
| ≤ 1-jet                                                          | 0.00-0.05 <mark>-0.310.46-0.44</mark> 0.01 0.01-0.03 <mark>-0.15-</mark> 0.07-0.04   | 1 -0.01-0.01-0.04 <mark>0.12</mark> -0.02 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .01 0.01 0.01 0.01 0.00 0.01 0.01 0.01                                                         |                         |
| $\geq$ 2-jet, $m_{jj}$ < 350 GeV, VH veto                        | 0.04 0.02 0.04 0.02 0.00 <mark>-0.460.48</mark> -0.05 <mark>-0.26 0.20 -0.11</mark>  | 0.01 1 0.11 0.00 0.14 0.10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .03 0.02 0.02 0.02 0.01 0.03 0.02 0.01 0.01 0.03 0.02 0.00 0.09 0.02                           | -0.2                    |
| $\geq$ 2-jet, $m_{jj}$ < 350 GeV, VH topo                        | 0.03 0.02 0.03 0.02 0.02 <mark>-0.180.28</mark> 0.04 <mark>-0.17-0.10</mark> -0.01   | 0.010.11 1 0.00 0.04 0.06 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.00 -0.09 0.02                          | 0                       |
| $\leq m_{jj} < 700 \text{ GeV}, p_T^H < 200 \text{ GeV}$         | 0.02 0.09 0.04 0.08 0.04 0.01 0.04 0.46 0.06 0.01 0.02                               | 0.040.00 0.00 1 0.21 0.09 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .03 0.03 0.03 0.02 0.01 0.03 0.03 0.01 0.02 0.02 0.02 0.02 <del>0</del> .02                    |                         |
| et, $m_{jj} \ge 700 \text{ GeV}, p_T^H < 200 \text{ GeV}$        | 0.11 0.18 0.11 0.18 0.09 0.00 0.02- <mark>0.20</mark> 0.13 0.01 0.06                 | 0.120.14 0.04 0.21 1 0.22 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .10 0.08 0.08 0.08 0.02 0.09 0.08 0.05 0.07 0.08 0.09 0.02 <mark>-0.38</mark> 0.09             |                         |
| et, $m_{jj} \ge 350 \text{ GeV}, p_T^H \ge 200 \text{ GeV}$      | 0.09 0.13 0.06 0.11 0.05-0.010.01 0.04-0.05-0.09-0.01                                | 0.020.10 0.06 0.09 0.22 1 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .08 0.07 0.07 0.08 0.01 0.08 0.07 0.04 0.06 0.06 0.08 0.01 <mark>-0.32</mark> -0.08            |                         |
| ρ <sup>V</sup> <sub>τ</sub> < 75 GeV                             | 0.07 0.10 0.01 0.07 0.03 0.01 0.03 0.05 0.08 0.01 0.03                               | 0.01 0.03 0.02 0.03 0.10 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 -0.16 0.10 0.08-0.04 0.08 0.08 0.03 0.04 0.05 0.07-0.03-0.23-0.09                            |                         |
| $75 \le p_{T}^{V} < 150 \text{ GeV}$                             | 0.06 0.10 0.02 0.06 0.02 0.01 0.03 0.04 0.08 0.02 0.03                               | 0.01 0.02 0.02 0.03 <mark>0.08 0.07 0</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.16 1 -0.12-0.03 0.12-0.03 0.04 0.03 0.04 0.04 0.06 0.05 0.20 0.05                            | -0.2                    |
| $150 \le p_{	au}^V < 250 	ext{ GeV}$                             | 0.06 0.10 0.02 0.07 0.02 0.01 0.04 0.04 0.06 0.01 0.03                               | 0.01 0.02 0.01 0.03 0.08 0.07 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .10-0.12 1 0.62 0.27 0.60 0.65 0.03 0.04 0.02 0.04 0.04 0.21 0.76                              | 0.2                     |
| <i>p</i> <sup>V</sup> <sub>τ</sub> ≥ 250 GeV                     | 0.06 0.11 0.01 0.08 0.03 0.01 0.04 0.04 0.07 0.01 0.04                               | 0.01 0.02 0.02 0.02 <mark>0.08 0.08 0</mark> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .08–0.03 <mark>0.62 1 20.24</mark> 0.67 0.68 0.03 0.04 0.03 0.04 20.03 0.22 0.83               |                         |
| $p_{T}^{V}$ < 150 GeV                                            | 0.01-0.010.02-0.010.00 0.00-0.010.01 0.01 0.00 0.00                                  | 0.00 0.01 0.01 0.01 0.02 0.01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04 <mark>-0.12-0.27-0.24</mark> 1 0.26-0.250.00 0.00 0.01 0.01 0.01 +0.02 0.30               | 0_4                     |
| $150 \le p_{T}^{V} < 250 \text{ GeV}$                            | 0.07 0.10 0.02 0.08 0.03 0.01 0.03 0.05 0.07 0.01 0.04                               | 0.01 0.03 0.02 0.03 0.09 0.08 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .08-0.03 0.60 0.67 <mark>-0.26 1 0.69</mark> 0.03 0.04 0.04 0.04 -0.03-0.22 <mark>-0.79</mark> | 0.1                     |
| $p_{\tau}^{V} \ge 250 \text{ GeV}$                               | 0.06 0.10 0.02 0.07 0.02 0.01 0.04 0.04 0.06 0.01 0.04                               | 0.01 0.02 0.02 0.03 <mark>0.08 0.07 0</mark> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .08-0.04 0.65 0.68 0.25 0.69 1 0.03 0.04 0.03 0.03+0.03+0.21 <mark>0.84</mark>                 |                         |
| $p_T^H < 60 \text{ GeV}$                                         | 0.03 0.04 0.01 0.03 0.01 0.01 0.02 0.03 0.04 0.02 0.02                               | 0.01 0.01 0.01 0.01 0.05 0.04 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .03 0.03 0.03 0.03 0.00 0.03 0.03 1 0.01 0.0                                                   | 0.6                     |
| 60 ≤ p <sup>H</sup> <sub>L</sub> < 120 GeV                       | 0.05 0.06 0.02 0.05 0.02 0.01 0.03 0.05 0.06 0.02 0.03                               | 0.01 0.01 0.02 0.02 0.07 0.06 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .04 0.04 0.04 0.04 0.00 0.04 0.04 0.01 1 0.03 0.11 0.20 0.15 0.04                              | 0.0                     |
| 120 ≤ <i>p</i> <sup><i>H</i></sup> <sub><i>L</i></sub> < 200 GeV | 0.05 0.08 0.02 0.05 0.02 0.02 0.03 0.06 0.07 0.06 0.05                               | 0.02 0.03 0.01 0.02 0.08 0.06 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .05 0.04 0.02 0.03 0.01 0.04 0.03 0.04 0.03 1 0.11+0.210.17-0.03                               |                         |
| <i>p</i> <sup><i>r</i></sup> <sub><i>T</i></sub> ≥ 200 GeV       | 0.06 0.08 0.02 0.05 0.02 0.03 0.04 0.08 0.07 0.01 0.03                               | 0.02 0.02 0.02 0.02 0.02 0.09 0.08 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .07 0.06 0.04 0.04 0.01 0.04 0.03 0.06 0.11 0.11 1 <mark>-0.4+0.20</mark> -0.04                | <u> </u>                |
| $tH \times B_{ZZ^*}$                                             | 0.02 0.02 0.01 0.01 0.00-0.02-0.01-0.06-0.03-0.03-0.01                               | 0.02 0.00 0.00 0.02 0.02 0.01 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ).03-0.05-0.04-0.030.01-0.03-0.03-0.11-0.20-0.21-0.41 1 0.050.03                               | 0.0                     |
| $B_{\gamma\gamma}/B_{ZZ^*}$                                      | <mark>0.27-0.38</mark> -0.09 <mark>-0.28</mark> -0.12-0.05-0.15-0.17-0.32-0.04-0.14- | 0.06-0.09-0.09-0.12 <mark>0.38-0.32-0</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23-0.20-0.21-0.22-0.02-0.22-0.210.10-0.15-0.17-0.20-0.05 1 0.24                              |                         |
| B <sub>b</sub> <sup>-</sup> B <sub>ZZ</sub>                      | 0.06-0.10-0.010.08-0.03-0.010.04-0.05-0.07-0.01-0.04-                                | 0.010.02-0.02-0.020.09-0.08-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.090.05- <mark>0.76-0.83</mark> 0.30- <mark>0.79-0.84</mark> 0.03-0.04-0.03-0.040.03 0.24 1   | /                       |
|                                                                  | GeV<br>GeV<br>GeV<br>GeV<br>GeV<br>GeV<br>GeV                                        | 1-je<br>vetc<br>topc<br>Ge/<br>Ge/<br>Ge/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gev                                                        | •                       |
|                                                                  | 10<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                           | × H V VH ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>15                        |                         |
|                                                                  |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                         |
|                                                                  |                                                                                      | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |                         |
|                                                                  | 0-j-<br>1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1                                     | <ul> <li>&lt; 35</li> <li< td=""><td>75<br/>150<br/>120<br/>120</td><td></td></li<></ul> | 75<br>150<br>120<br>120                                                                        |                         |
|                                                                  | -jet,,<br>jet,, 1<br>350<br>350                                                      | n <sub>ji</sub> -<br>700<br>700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                         |
|                                                                  |                                                                                      | jet,<br>⊳ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |                         |
|                                                                  | 350<br>                                                                              | 2 -2 -2 -<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                         |
|                                                                  | $\eta_{jj}^{2} < 2$ -jet                                                             | 50 ≤ 50 ≤ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |                         |
|                                                                  | st,                                                                                  | i∧  ∧  3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                         |
|                                                                  | - <u>J</u>                                                                           | 2-je                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                |                         |
|                                                                  | $aa \rightarrow H$                                                                   | aa→Haa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aa→Hlv aa/aa→Hll tŦH                                                                           |                         |
|                                                                  | × B <sub>zz*</sub>                                                                   | × B <sub>zz</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\times B_{ZZ^*} \times B_{ZZ^*} \times B_{ZZ^*}$                                              |                         |
|                                                                  |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                         |

|            | 0-jet, $p_{\tau}^{H}$ < 10 Ge                                   |
|------------|-----------------------------------------------------------------|
|            | 0-jet, $10 \le p_{\tau}^{H'} < 200$ Ge                          |
|            | 1-jet, $p_{\tau}^{'H}$ < 60 Ge                                  |
|            | 1-jet, $60 \le p_{T}^{H'} < 120$ Ge                             |
| I in       | 1-jet, 120 $\leq p_{T}^{H}$ < 200 Ge                            |
| βa         | ≥ 2-jet, $m_{jj}$ < 350 GeV, $p_{\tau}^{H}$ < 120 Ge            |
| З X        | $\geq$ 2-jet, $m_{jj}$ < 350 GeV, 120 $\leq p_{T}^{H}$ < 200 Ge |
|            | $\geq$ 2-jet, $m_{jj} \geq$ 350 GeV, $p_T^H$ < 200 Ge           |
|            | $200 \le p_{T_{c}}^{H} < 300 \text{ Ge}$                        |
|            | $300 \le p_T^H < 450 \text{ Ge}$                                |
|            | $p_{\tau}^{H} \ge 450 \text{ Ge}$                               |
|            | ≤ 1-                                                            |
| bb :z      | $\geq$ 2-jet, $m_{jj}$ < 350 GeV, VH ve                         |
| EΩ         | $\geq$ 2-jet, $m_{jj} < 350 \text{ GeV}, VH$ to                 |
| -bb        | $\geq$ 2-jet, 350 $\leq m_{jj} <$ 700 GeV, $p_T^{+} <$ 200 Ge   |
|            | $\geq 2$ -jet, $m_{jj} \geq 700$ GeV, $p_T^H \geq 200$ Ge       |
|            | $\geq 2$ -jet, $m_{jj} \geq 350$ GeV, $p_{T} \geq 200$ GeV      |
| -z-        | $p_{T} < 73 \text{ Ge}$                                         |
| ŤΞ         | $150 \le p_T^V \le 250$ Ge                                      |
| bb ×       | $p^V \ge 250 \text{ Ge}$                                        |
| 토          | $p_{-}^{V} < 150  \text{Ge}$                                    |
| βΩ         | $150 \le p_{\pi}^{V} < 250 \text{ Ge}$                          |
| ¢∕bi<br>×  | $p_T^V \ge 250 \text{ Ge}$                                      |
| 6          | p_{_{T}}^{H} < 60 Ge                                            |
| Ľ.         | $60 \le p_{T}^{H} < 120 \text{ Ge}$                             |
| ±t⊢<br>× ⊟ | $120 \le p_T^H < 200 \text{ Ge}$                                |
|            | $p_{T}^{H} \ge 200 \text{ Ge}$                                  |
|            | $tH \times B_Z$                                                 |
|            | $B_{\gamma\gamma}/B_{z}$                                        |
|            |                                                                 |
|            |                                                                 |
|            |                                                                 |
|            |                                                                 |
|            |                                                                 |

![](_page_15_Picture_6.jpeg)

#### Higgs coupling measurements - the kappa framework

- Parameterisations of Higgs boson production cross-sections and decay widths as a function of coupling strength modifiers using kappa framework
- Considering leading order contributions only
  - Other assumptions are typically made

$$\kappa_j^2 = \frac{\sigma_j}{\sigma_j^{\text{SM}}} \quad \text{or} \quad \kappa_j^2 = \frac{\Gamma_j}{\Gamma_j^{\text{SM}}}$$

| Production                          | Loops                                                             | Main         | Effective                                      | Pasalvad modifiar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-------------------------------------|-------------------------------------------------------------------|--------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fioduction                          |                                                                   | interference | modifier                                       | Resolved modifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| $\sigma(ggF)$                       | $\checkmark$                                                      | t-b          | $\kappa_g^2$                                   | $1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.000 \kappa_t^2 \kappa_b - 0.000 \kappa_b - 0.$ |  |  |
| $\sigma(\text{VBF})$                | -                                                                 | -            | -                                              | $0.733 \kappa_W^2 + 0.267 \kappa_Z^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $\sigma(qq/qg \to ZH)$              | -                                                                 | -            | -                                              | $\kappa_Z^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\sigma(aa \rightarrow 7H)$         | ./                                                                | t_7          | K                                              | $2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $O(gg \rightarrow ZH)$              | $g \rightarrow ZH$ ) $\checkmark$ $t-Z$ $\kappa_{(ggZH)}$ $-0.01$ |              | $-0.011\kappa_Z\kappa_b+0.003\kappa_t\kappa_b$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $\sigma(WH)$                        | -                                                                 | -            | -                                              | $\kappa_W^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\sigma(t\bar{t}H)$                 | -                                                                 | -            | -                                              | $\kappa_t^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\sigma(tHW)$                       | -                                                                 | t-W          | -                                              | $2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $\sigma(tHq)$                       | -                                                                 | t-W          | -                                              | $2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $\sigma(b\bar{b}H)$                 | -                                                                 | -            | -                                              | $\kappa_b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Partial decay width                 |                                                                   |              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $\Gamma^{bb}$                       | -                                                                 | -            | -                                              | $\kappa_{h}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| $\Gamma^{WW}$                       | -                                                                 | -            | -                                              | $\kappa_W^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\Gamma^{gg}$                       | $\checkmark$                                                      | t-b          | $\kappa_{g}^{2}$                               | $1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $\Gamma^{\tau \tau}$                | -                                                                 | -            | -                                              | $\kappa_{\tau}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| $\Gamma^{ZZ}$                       | -                                                                 | -            | -                                              | $\kappa_Z^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\Gamma^{cc}$                       | -                                                                 | -            | -                                              | $\kappa_c^2 \ (= \kappa_t^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                     |                                                                   |              |                                                | $1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $\Gamma^{\gamma\gamma}$             | $\checkmark$                                                      | t-W          | $\kappa_{\gamma}^2$                            | $+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                     |                                                                   |              |                                                | $-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| $\Gamma^{Z\gamma}$                  | $\checkmark$                                                      | t-W          | $\kappa^2_{(Z,\gamma)}$                        | $1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| $\Gamma^{ss}$                       | -                                                                 | -            | -                                              | $\kappa_s^2 \ (= \kappa_h^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| $\Gamma^{\mu\mu}$                   | -                                                                 | -            | -                                              | $\kappa_{\mu}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Total width $(B_{i.} = B_{u.} = 0)$ |                                                                   |              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                     |                                                                   |              |                                                | $0.581 \kappa_{h}^{2} + 0.215 \kappa_{W}^{2} + 0.082 \kappa_{g}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                     |                                                                   |              |                                                | $+0.063 \kappa_{\tau}^2 + 0.026 \kappa_Z^2 + 0.029 \kappa_c^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| $\Gamma_H$                          | $\checkmark$                                                      | -            | $\kappa_H^2$                                   | $+0.0023 \kappa_{\gamma}^{2} + 0.0015 \kappa_{(7\alpha)}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                     |                                                                   |              |                                                | $+0.0004 \kappa_s^2 + 0.00022 \kappa_\mu^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                     |                                                                   |              |                                                | <i>•</i> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

![](_page_16_Figure_8.jpeg)

![](_page_16_Figure_9.jpeg)

![](_page_16_Figure_10.jpeg)

### **Higgs coupling measurements**

- ATLAS and CMS have performed global fit of coupling modifiers (using kappa framework)
  - ~6% uncertainty on Higgs to vector boson couplings
  - ~10-15% uncertainty on Higgs to the 3rd generation fermion couplings

Footprint of SM Higgs boson: mass versus coupling correlation

![](_page_17_Figure_5.jpeg)

![](_page_17_Picture_7.jpeg)

#### Measurements of CP structure of Higgs boson couplings

- With full Run 2 dataset, both ATLAS & CMS have observed ttH in  $H \rightarrow \gamma \gamma$  channel
  - This reaction is used to probe **CP mixing in top-Yukawa coupling**
  - The data disfavour **pure CP-odd** model of **Htt** coupling at  $3.9\sigma$  and  $3.2\sigma$  from ATLAS and CMS

#### • $(H \rightarrow WW)$ +jj production is used by ATLAS to:

- Constrain CP properties of the **effective Hgg vertex** (in ggF): ratio of CP-odd to CP-even coupling strength scale factors is measured to be  $0.0 \pm 0.4$ (stat)  $\pm 0.3$ (syst)
- Access Higgs couplings to **longitudinally** and **transversely** polarised **W** and **Z** bosons in VBF process:

$$a_{\rm L} = 0.91^{+0.10}_{-0.18} (\text{stat.})^{+0.09}_{-0.18} (\text{syst.}) \qquad a_{\rm L} = \frac{g_{HV_{\rm L}V_{\rm L}}}{g_{HVV}},$$
  
$$a_{\rm T} = 1.16 \pm 0.4 (\text{stat.})^{+0.4}_{-0.3} (\text{syst.})$$

(results consistent with the SM predictions)

CMS Data ശ Events Background PRL125 (2020) 061802 (ATLAS) PRL125 (2020) 061801 (CMS) Weighted â S/(S 110

 $g_{HV_{T}V_{T}}$  $a_{\rm T} =$  $g_{HVV}$ 

![](_page_18_Figure_12.jpeg)

![](_page_18_Figure_13.jpeg)

Stat+Syst

SM expected

Stat only

# **Higgs to invisible searches**

- and CMS
  - Observed upper limit  $B(H \rightarrow inv.) = 0.11$  (95% CL) from recent ATLAS combination

![](_page_19_Figure_3.jpeg)

#### Searches have been performed in VBF, ttH and VH channels in both ATLAS

![](_page_19_Figure_6.jpeg)

![](_page_19_Picture_8.jpeg)

# Higgs to invisible searches

- Matter (DM) limits under certain assumptions (Higgs portal scenarios)
  - LHC provides the best limit for low-mass DM in model-specific scenarios

![](_page_20_Figure_3.jpeg)

# Higgs to invisible is sensitive to BSM phenomena that can be recast in Dark

![](_page_20_Picture_7.jpeg)

# **Di-Higgs production**

production

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_5.jpeg)

VBF channel offers access to the **HHVV quartic coupling** (not present in ggF production). Here also cancellations lead to decreasing cross section.

#### HH production at the LHC is dominated by the ggF process, followed by VBF

PLB 732 (2014) 142-149

### Search for di-Higgs production

- Early Run 2 results (36 fb<sup>-1</sup>) focused on ggF production
- Limits on cross section and self-coupling were obtained
  - $\sigma_{HH}/\sigma_{HH}(SM)$ : < 6.9 (ATLAS), < 22 (CMS)
  - $\kappa_{\lambda}$  =  $\lambda/\lambda_{\text{SM}}$   $\in$  [-5, 12] (ATLAS), [-12, 19] (CMS)

![](_page_22_Figure_5.jpeg)

#### 1 on ggF production upling were obtained

![](_page_22_Figure_7.jpeg)

![](_page_22_Picture_8.jpeg)

# Search for di-Higgs production

- Recent HH searches with full Run 2 data
  - Constraints on  $\kappa_{2v}$ : -0.76 <  $\kappa_{2v}$  < 2.90 (ATLAS bbbb), -1.3 <  $\kappa_{2v}$  < 3.5 (CMS  $\gamma\gamma$ bb)
  - New CMS bbyy result with full Run 2 luminosity:  $\sigma_{HH} \times B(HH \rightarrow \gamma\gamma bb) < 7.7$  (5.2) obs. (exp.) times SM prediction

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_6.jpeg)

![](_page_23_Picture_7.jpeg)

#### Search for $H \rightarrow cc$ decay

- Latest CMS search with 35.9 fb<sup>-1</sup>:  $\sigma/\sigma(SM) < 70$  (37) obs. (exp.)

![](_page_24_Figure_3.jpeg)

![](_page_24_Picture_4.jpeg)

# • Very challenging channel, large background from $H \rightarrow bb$ , c-tagging is critical

![](_page_24_Figure_6.jpeg)

JHEP 03 (2020) 131

25

#### Evidence for $H \rightarrow \mu\mu$ decay channel

- Very rare decay channel:  $B(H \rightarrow \mu\mu) = 2.2 \times 10^{-4}$
- Huge Drell-Yan background to "beat"
  - Signal extraction by topology of production mode ullet
  - Use machine learning techniques to increase sensitivity lacksquare

![](_page_25_Figure_5.jpeg)

![](_page_25_Figure_7.jpeg)

![](_page_25_Picture_8.jpeg)

#### Evidence for $H \rightarrow \mu \mu$ decay channel

- CMS result:  $3.0\sigma$  (2.5 $\sigma$ ) obs. (exp.),  $\mu = 1.19 \pm 0.40$  (stat)  $\pm 0.15$  (syst)

![](_page_26_Figure_3.jpeg)

#### • ATLAS result: $2.0\sigma$ (1.7 $\sigma$ ) obs. (exp.) significance, measured $\mu = 1.2 \pm 0.6$

27

### Search for $H \rightarrow IIV$ decays

- Very rare process
- Several processes contribute to the final state
  - BSM sensitivity through loops
- Diverse final state kinematics
  - Dedicated analyses are typically performed for each region of phase-space

![](_page_27_Figure_6.jpeg)

![](_page_27_Figure_8.jpeg)

![](_page_27_Figure_9.jpeg)

![](_page_27_Figure_11.jpeg)

![](_page_27_Picture_13.jpeg)

### Search for $H \rightarrow Zy$ decays

- Updated  $H \rightarrow Z\gamma$  search with 139 fb<sup>-1</sup> by ATLAS
  - Events categorised according to production modes
  - Additional BDT VBF categorisation to enhance sensitivity lacksquare
- Observed (expected) significance is  $2.2\sigma$  (1.2 $\sigma$ )
  - Upper limit on  $\sigma_H \times B(H \rightarrow Z\gamma)$ : 3.6 times the SM prediction

![](_page_28_Figure_6.jpeg)

![](_page_28_Figure_12.jpeg)

| Category                       | Events | <i>S</i> <sub>68</sub> | $B_{68}$ | N <sub>68</sub> | w <sub>68</sub> [GeV] | $S_{68}/B_{68}$ |
|--------------------------------|--------|------------------------|----------|-----------------|-----------------------|-----------------|
| VBF-enriched                   | 194    | 2.7                    | 16.7     | 17              | 3.7                   | 16.2            |
| High relative $p_{\rm T}$      | 2276   | 7.6                    | 108.5    | 118             | 3.7                   | 7.0             |
| High $p_{\mathrm{T}t} \ ee$    | 5567   | 9.9                    | 474.7    | 498             | 3.8                   | 2.1             |
| Low $p_{\mathrm{T}t} \ ee$     | 76679  | 34.5                   | 6418.6   | 6505            | 4.1                   | 0.5             |
| High $p_{Tt} \mu \mu$          | 6979   | 12.0                   | 634.4    | 632             | 3.9                   | 1.9             |
| Low $p_{\mathrm{T}t} \ \mu\mu$ | 100876 | 43.5                   | 8506.9   | 8491            | 4.0                   | 0.5             |
| Inclusive                      | 192571 | 110.2                  | 16159.8  | 16261           | 4.0                   | 0.7             |
|                                |        |                        |          |                 |                       |                 |

Phys. Lett. B 809 (2020) 135754

![](_page_28_Picture_15.jpeg)

#### Evidence for $H \rightarrow IIV$ decays at low-m<sub>II</sub>

- New ATLAS analysis exploring m<sub>II</sub> < 30 GeV</li>
  - Region dominated by  $H \rightarrow \gamma^* \gamma \rightarrow II\gamma$  decay mechanism
  - B(H→eeγ) = **7.2** ×10<sup>-5</sup>, B(H→μμγ) = **3.4** ×10<sup>-5</sup> lacksquare
- Due to the low-mass of the dilepton system leptons are often very collimated
  - Dedicated identification algorithms for merged-ee objects
  - Merged-ee ID efficiency is measured in data using radiative Z decays with early photon conversion

![](_page_29_Figure_7.jpeg)

![](_page_29_Figure_8.jpeg)

ATLAS-CONF-2021-002

![](_page_29_Figure_9.jpeg)

![](_page_29_Picture_10.jpeg)

#### Evidence for $H \rightarrow II\gamma$ decays at low- $m_{II}$

- Measured fiducial  $\sigma_H \times B(H \rightarrow II\gamma)$  (m<sub>II</sub> < 30 GeV): 8.7 ± 2.8 fb
  - Corresponds to the signal strength  $\mu = 1.5 \pm 0.5$
- Significance above background-only hypothesis:  $3.2\sigma$  (2.1 $\sigma$  expected)
  - First evidence for  $H \rightarrow IIy$  decay

![](_page_30_Figure_5.jpeg)

ATLAS-CONF-2021-002

![](_page_30_Figure_10.jpeg)

![](_page_30_Picture_11.jpeg)

#### Evidence for $H \rightarrow IIy$ decays at low-m

![](_page_31_Picture_1.jpeg)

ATLAS-CONF-2021-002

Event display of a candidate  $H \rightarrow ee\gamma$  event from the ee-merged VBF-enriched category

# **The High-Luminosity LHC**

- 20 times more integrated luminosity than LHC Run 2 Up to 200 pp interactions per bunch crossing! ullet
- Better detectors, larger acceptance, better triggers
- Improved theory and analysis methods

|                  | 2020 2021 | 2022 2023 2024                               | 4 2025 2026         | 2027 2028 2029 20                                | 030 2031 20 | 32 2033 2034                                    |
|------------------|-----------|----------------------------------------------|---------------------|--------------------------------------------------|-------------|-------------------------------------------------|
|                  |           | LHC                                          | High-Luminosity LHC |                                                  |             |                                                 |
|                  | LS2       | Run 3                                        | LS3                 | Run 4                                            | LS4         | Run 5                                           |
| ATLAS<br>and CMS |           | 2 x 10 <sup>34</sup><br>300 fb <sup>-1</sup> | Detector<br>Upgrade | 5-7 x 10 <sup>34</sup><br>~1000 fb <sup>-1</sup> |             | 5-7 x 10 <sup>34</sup><br>3000 fb <sup>-1</sup> |

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

# Prospects at High-Luminosity LHC (3000 fb<sup>-1</sup>)

- 3-8% precision of Higgs Br to W/Z, 3rd gen. fermions and muons
- Discovery of  $H \rightarrow \mu\mu$  and  $H \rightarrow Z\gamma$  decays
- $H \rightarrow cc$  :  $\sigma/\sigma(SM) < 6$  from ATLAS Run 2 result extrapolation

![](_page_33_Figure_4.jpeg)

![](_page_33_Figure_5.jpeg)

arXiv:1902.00134

![](_page_33_Picture_7.jpeg)

# **Prospects at High-Luminosity LHC (3000 fb<sup>-1</sup>)**

factor of 10 at HL-LHC w.r.t. current measurements

![](_page_34_Figure_2.jpeg)

## Uncertainties in the Higgs p<sub>T</sub> measurement at high-p<sub>T</sub> can be reduced by a

![](_page_34_Figure_4.jpeg)

arXiv:1902.00134

![](_page_34_Picture_6.jpeg)

# **Prospects at High-Luminosity LHC (3000 fb<sup>-1</sup>)**

with full HL-LHC dataset

![](_page_35_Figure_2.jpeg)

![](_page_35_Figure_3.jpeg)

arXiv:1902.00134

At 95% CL, ATLAS+CMS is anticipated to exclude no Higgs trilinear coupling

![](_page_35_Figure_6.jpeg)

![](_page_35_Figure_7.jpeg)

![](_page_35_Figure_8.jpeg)

![](_page_35_Picture_9.jpeg)

### Summary

- ATLAS and CMS collaborations continue to probe the nature of the Higgs boson using full LHC Run 2 data at 13 TeV (~140 fb<sup>-1</sup>)
- Higgs physics at the LHC moves towards precision measurement era
- LHC starts to have sensitivity to Higgs couplings with 2nd generation fermion
- Other rare Higgs boson decays start to be accessible (e.g.  $H \rightarrow II\gamma$ )
- ~5% of the LHC integrated luminosity has been achieved so far
  - HL-LHC will be able to precisely probe Higgs couplings with the 2nd generation fermion and be able to set strong constraints on Higgs self-coupling parameter
- Stay tuned for new measurements!

37

#### Backup

![](_page_37_Picture_2.jpeg)

# H self-coupling from single H production

- Single H production sensitive to  $\lambda$ through NLO EW corrections
- ATLAS and CMS extracted limits on  $\kappa_{\lambda}$ as part of recent Higgs combinations
- This method achieves similar sensitivity to direct HH searches, but uses some assumption assumptions

![](_page_38_Figure_4.jpeg)

![](_page_38_Figure_5.jpeg)

![](_page_38_Figure_7.jpeg)

![](_page_38_Picture_8.jpeg)

### **Constraints on Higgs boson width**

- Indirect measurement from off-shell production in  $H \rightarrow ZZ$  channel
- Obs. limit on Higgs width:
  - ATLAS Run 2 (36.1fb<sup>-1</sup>): < **14.4 MeV**
  - CMS Run 1+2 (77 fb<sup>-1</sup>): • [0.08, 9.16] MeV
  - SM prediction: **4.1 MeV**

HL-LHC projections: CMS:  $4.1^{+1.0}_{-1.1}$  MeV ATLAS:  $4.2^{+1.5}_{-2.1}$  MeV arXiv:1902.00134

![](_page_39_Figure_7.jpeg)

 $\sigma_{vv \to H \to 4\ell}^{\text{on-shell}} \propto \mu_{vvH}$  and  $\sigma_{vv \to H \to 4\ell}^{\text{off-shell}} \propto \mu_{vvH} \Gamma_{H}$ 

PRD 99 (2019) 112003

PLB 786 (2018) 223

![](_page_39_Picture_12.jpeg)