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In the primordial plasma
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As temperature decreases the Higgs 
vev goes from zero to 𝑣 ≠ 0 

Electroweak Spontaneous 
Symmetry Breaking (EWSSB)
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In the Standard Model the EW 
phase transition is a crossover 
(𝐸 ≠ 0 but small)

However in BSM theories we can 
easily have first-order phase transitions
(e. g. in SUSY already at tree level)
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First-Order Phase Transitions occur through the nucleation of broken phase bubbles

friction between 

scalar and plasma

Espinosa et al. [1004.4187] 

Bubble collisions break spherical symmetry 

Nonzero anisotropic stresses → scalar and fluid can produce gravitational waves
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Credits: Alberto Roper Pol

Lisa Cosmology Working Group [2403.03723]

Introduction: first-order phase transitions

Sound-shell model

Constant-in-time model

Hindmarsh & Hijazi [1909.10040]

Roper Pol, Caprini et al. [2201.05630]

GW background from EW phase 
transition in the LISA sensitivity band!



Gravitational Waves from sound waves
[Ongoing work in collaboration with C. Caprini, S. Procacci, A. Roper Pol]
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and gravitational waves

Credits: Alberto Roper Pol

Our work → What is the origin 
of the peak scales in the GW 
spectrum from sound waves? 

Lisa Cosmology Working Group [2403.03723]

Introduction: first-order phase transitions

Hindmarsh & Hijazi [1909.10040]

Sound-shell model
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Tμν
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𝜕ϕ
= 𝛿𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

Full picture requires lattice simulations
[1504.03291] [2409.03651][2505.17824]

What can we understand analytically? 

η uμ𝜕μϕ ?
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Fluid perturbations from expanding scalar bubbles

Simplifying assumptions:

- Flat spacetime

- Bag equation of state

- Neglect scalar field profiles
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Fluid perturbations from expanding scalar bubbles
pip install cosmoGW



Fluid perturbations from expanding scalar bubbles
DEFLAGRATIONS

HYBRIDS

DETONATIONS

𝜉𝑤 < 𝑐𝑠

𝑐𝑠 < 𝜉𝑤 < 𝑣𝐶𝐽(𝛼)

𝜉𝑤 > 𝑣𝐶𝐽(𝛼)

𝑣𝐶𝐽 𝛼 =
1 + 𝛼 2 + 3𝛼

3(1 + 𝛼)

pip install cosmoGW



Fluid perturbations from expanding scalar bubbles

𝑣𝐶𝐽 𝛼 =
1 + 𝛼 2 + 3𝛼

3(1 + 𝛼)Properties of the profiles:

-   Compact support
𝑣𝑖𝑝 𝜉 ≠ 0 𝑓𝑜𝑟 𝜉𝑏 < 𝜉 < 𝜉𝑓

-    Discontinuity at 𝜉𝑤

- Deflagrations and hybrids have    
      an additional discontinuity at 

𝜉 = 𝑣𝑠ℎ

pip install cosmoGW



Evolution of the fluid perturbations: before collisions
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Average over nucleation locations (homogeneously distributed)
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Small scales 𝑘 = 𝑧/𝑡(𝑛) → ∞ |𝑓′ 𝑧 |2 → |𝑓∞
′ |2 𝑧−4

From the discontinuities of 𝑣𝑖𝑝(𝜉)

From compact support of 𝑣𝑖𝑝(𝜉)



𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1
The ∼ 𝑧2 ends around

Properties of |𝑓′ 𝑧 |2

𝛼 = 0.1



(𝜉𝑤< 𝑐𝑠)

(𝜉𝑤> 𝑣𝐶𝐽)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

The ∼ 𝑧2 ends around

The ∼ 𝑧−4 begins around

Properties of |𝑓′ 𝑧 |2

𝛼 = 0.1



𝜉𝑓 − 𝜉𝑏 ∝ Δ𝑅∗ (sound shell thickness)

(𝜉𝑤< 𝑐𝑠)

(𝜉𝑤> 𝑣𝐶𝐽)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

The ∼ 𝑧2 ends around

The ∼ 𝑧−4 begins around

Properties of |𝑓′ 𝑧 |2

𝛼 = 0.1



𝜉𝑓 − 𝜉𝑏 ∝ Δ𝑅∗ (sound shell thickness)

(𝜉𝑤< 𝑐𝑠)

(𝜉𝑤> 𝑣𝐶𝐽)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏
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𝜉𝑓 − 𝜉𝑏
−1
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The ∼ 𝑧−4 begins around

Properties of |𝑓′ 𝑧 |2

𝜉𝑓 − 𝜉𝑤 = 𝜉𝑠ℎ − 𝜉𝑤 distance between
discontinuities
(for hybrids)

𝛼 = 0.1



𝑓′(𝑧) 𝑒𝑛𝑣
2 = 𝑓0

′ 2 𝑧2 1 +
𝑧

𝑧1

𝑎1
𝛾−2

𝑎1
1 +

𝑧

𝑧2

𝑎2
−𝛾−4

𝑎2

𝛾 = 2 1 − 3
log 𝑧2/𝑧𝑐𝑟𝑜𝑠𝑠
log(𝑧2/𝑧1)

Properties of |𝑓′ 𝑧 |2

𝛼 = 0.1

Double broken power law fit



16/09/25 Antonino Salvino Midiri

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

(𝜉𝑤< 𝑐𝑠)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

(𝜉𝑤> 𝑣𝐶𝐽)

[2403.03723]

𝑧2 = 𝜋 × 𝑐𝑠 − 𝜉𝑤
−1

𝑧2 = 𝜋 × 𝜉𝑓 − 𝜉𝑏
−1

Much broader spectrum for hybrids than using

∝ Δ𝑅∗
−1

(Lisa Cosmology
Working Group) 

Scales of |𝑓′ 𝑧 |2



Evolution of the fluid perturbations: before collisions

Average over nucleation times
𝑣𝑖 𝑡, 𝒌 𝑣𝑗

∗ 𝑡, 𝒌′
𝒙0
𝑛
, 𝑡0
(𝑛)

The kinetic spectrum in the bubble expansion phase
is an average over stochastic realizations



Evolution of the fluid perturbations: across collisions

Average over nucleation times
and collision times

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛
, 𝑡0
(𝑛)

The kinetic spectrum in the bubble expansion phase
is an average over stochastic realizations



Evolution of the fluid perturbations: across collisions

Average over nucleation times
and collision times

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛
, 𝑡0
(𝑛)

The kinetic spectrum in the bubble expansion phase
is an average over stochastic realizations

We can model the nucleation history with a normalized lifetime distribution 𝜈(𝑇)

𝐹𝐿 𝑡𝑐𝑜𝑙𝑙, 𝑘 = 𝑛𝑏(𝑡𝑐𝑜𝑙𝑙)න
0

∞

𝑑𝑇 𝜈 𝑇 𝑇6 𝑓′(𝑘𝑇) 2

Kinetic spectrum at collisions

Hindmarsh & Hijazi [1909.10040]



Evolution of the fluid perturbations: across collisions

𝐹𝐿 𝑡𝑐𝑜𝑙𝑙, 𝑘 = 𝑛𝑏(𝑡𝑐𝑜𝑙𝑙)න
0

∞

𝑑𝑇 𝜈 𝑇 𝑇6 𝑓′(𝑘𝑇) 2 Kinetic spectrum at collisions

Large scales 𝑘 → 0 𝐹𝐿 → 𝑘2𝐹𝐿
0

Small scales 𝑘 → ∞ 𝐹𝐿 → 𝑘−4𝐹𝐿
𝑒𝑛𝑣

𝑘1 ≃ 𝛽
𝑧1
5.7

𝑘2 ≃ 𝛽
𝑧2
2.4

(exponential
nucleation)

𝑘2 ends around 

𝑘−4 starts around 



Consequences for the gravitational wave spectrum 

Hindmarsh & Hijazi [1909.10040]

Roper Pol, Procacci, Caprini [2308.12943]

Ω𝐺𝑊 𝜏0, 𝑘 = 3 𝒯𝐺𝑊ඵ
𝜏∗

min[𝜏0,𝜏𝑓𝑖𝑛]𝑑𝜏1
𝜏1

𝑑𝜏2
𝜏2

cos 𝑘 𝜏0 − 𝜏1 cos 𝑘 𝜏0 − 𝜏2 𝐸Π(𝑘, 𝜏1, 𝜏2)

UETC for sound-waves computed from the kinetic spectrum

𝑘1
𝐺𝑊 ≈ 1.2 × 𝑘1

𝑘2
𝐺𝑊 ≈ 1.2 × 𝑘2

Double broken power law fit for the peak of Ω𝐺𝑊 with scales



Gravitational Waves from turbulence
[Ongoing works in collaboration with C. Caprini, A. Roper Pol, M. Salomé (theory)
                                                                             D. Figueroa, K. Marschall, A. Roper Pol (simulations)]



and gravitational waves

Credits: Alberto Roper Pol

Lisa Cosmology Working Group [2403.03723]

Introduction: first-order phase transitions

Constant-in-time model
Roper Pol, Caprini et al. [2201.05630]



and gravitational waves

Credits: Alberto Roper Pol

Lisa Cosmology Working Group [2403.03723]

Introduction: first-order phase transitions

Constant-in-time model
Roper Pol, Caprini et al. [2201.05630]

How long does it take for turbulence 
to develop? 

Which fraction of energy goes into it?

How does the sourcing period affect 
the final GW spectrum?

How does turbulence evolve in the 
fully relativistic regime?



Magnetic Field Contribution

• The GW spectrum from numerical 
simulations of decaying MHD 
turbulence can be described with 
the constant-in-time model (Roper 
Pol et al. [2201.05630])

Gravitational Waves from decaying MHD turbulence

• In a cosmological phase transition 
scalar field gradients can generate 
magnetic fields (Vachaspati et al. 
2021) leading, due to the high 
conductivity of the primordial 
plasma (Arnold et al. 2003), to MHD 
turbulence



Constant-in-time model for the UETC of the source

Ω𝐺𝑊 𝜏0, 𝑘 = 3 𝒯𝐺𝑊ඵ
𝜏∗

min[𝜏0,𝜏𝑓𝑖𝑛]𝑑𝜏1
𝜏1

𝑑𝜏2
𝜏2

cos 𝑘 𝜏0 − 𝜏1 cos 𝑘 𝜏0 − 𝜏2 𝐸Π(𝑘, 𝜏1, 𝜏2)



  Assuming that the source is slowly decaying* for 𝐸Π 𝑘, 𝜏1, 𝜏2 = 𝐸Π
∗ (𝑘) 𝜏∗ < 𝜏 < 𝜏𝑓𝑖𝑛

Constant-in-time model for the UETC of the source

*with respect to the light crossing time at wavenumber 𝑘  
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4
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−
1
3



  Assuming that the source is slowly decaying* for 𝐸Π 𝑘, 𝜏1, 𝜏2 = 𝐸Π
∗ (𝑘) 

Ω𝐺𝑊 𝜏0, 𝑘 = 3 𝒯𝐺𝑊𝐸Π
∗ (𝑘)න

𝜏∗

min[𝜏0,𝜏𝑓𝑖𝑛]

න
𝜏∗

min[𝜏0,𝜏𝑓𝑖𝑛]𝑑𝜏1
𝜏1

𝑑𝜏2
𝜏2

cos 𝑘 𝜏0 − 𝜏1 cos 𝑘(𝜏0 − 𝜏2)

𝜏∗ < 𝜏 < 𝜏𝑓𝑖𝑛

≡ 3 𝒯𝐺𝑊𝐸Π
∗ 𝑘 Δ2(𝑘, 𝜏0)

Constant-in-time model for the UETC of the source

*with respect to the light crossing time at wavenumber 𝑘  

Ω𝐺𝑊 𝜏0, 𝑘 = 3 𝒯𝐺𝑊ඵ
𝜏∗

min[𝜏0,𝜏𝑓𝑖𝑛]𝑑𝜏1
𝜏1

𝑑𝜏2
𝜏2

cos 𝑘 𝜏0 − 𝜏1 cos 𝑘 𝜏0 − 𝜏2 𝐸Π(𝑘, 𝜏1, 𝜏2)

𝒯𝐺𝑊 =
𝑎∗
𝑎0

4
𝐻∗

𝐻0

2

≈ 1.6 × 10−5
𝑔∗
100

−
1
3

𝐸Π
∗ 𝑘 ∝ Π𝑖𝑗 𝜏∗, 𝑘 Π𝑖𝑗

∗ (𝜏∗, 𝑘)
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100
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∗ 𝑘 ∝ Π𝑖𝑗 𝜏∗, 𝑘 Π𝑖𝑗

∗ (𝜏∗, 𝑘)

Δ 𝑘, 𝜏0 ≡ න
𝜏∗

min[𝜏0,𝜏𝑓𝑖𝑛] d ǁ𝜏

ǁ𝜏
cos 𝑘 𝜏0 − ǁ𝜏



Ω𝐺𝑊(𝑘, 𝜏0) ≡ 3 𝒯𝐺𝑊𝐸Π
∗ 𝑘 Δ0

2(𝑘, 𝜏𝑓𝑖𝑛)

Assuming for the UETC 𝐸Π
∗ 𝑘 ~

𝑘3 𝑘 < 𝑘∗

𝑘−𝑏 𝑘 > 𝑘∗

lnΩ𝐺𝑊
𝐸𝑁𝑉(𝑘, 𝜏0)

ln 𝑘ln 1/𝛿𝜏𝑓𝑖𝑛 ln 𝑘∗

causality

Constant-in-time model for the UETC of the source
𝛿𝜏𝑓𝑖𝑛 = 𝜏𝑓 − 𝜏∗



Ω𝐺𝑊(𝑘, 𝜏0) ≡ 3 𝒯𝐺𝑊𝐸Π
∗ 𝑘 Δ0

2(𝑘, 𝜏𝑓𝑖𝑛)

Assuming for the UETC 𝐸Π
∗ 𝑘 ~

𝑘3 𝑘 < 𝑘∗

𝑘−𝑏 𝑘 > 𝑘∗

lnΩ𝐺𝑊
𝐸𝑁𝑉(𝑘, 𝜏0)

ln 𝑘ln 1/𝛿𝜏𝑓𝑖𝑛 

~𝑘3

ln 𝑘∗

causality

Constant-in-time model for the UETC of the source
𝛿𝜏𝑓𝑖𝑛 = 𝜏𝑓 − 𝜏∗



Assuming for the UETC 𝐸Π
∗ 𝑘 ~

𝑘3 𝑘 < 𝑘∗

𝑘−𝑏 𝑘 > 𝑘∗

lnΩ𝐺𝑊
𝐸𝑁𝑉(𝑘, 𝜏0)

ln 𝑘ln 1/𝛿𝜏𝑓𝑖𝑛 

~𝑘3

ln 𝑘∗

~𝑘3 ln2[1 +ℋ∗/𝑘]

~𝑘 (𝑘 ≫ ℋ∗)

causality

Constant-in-time model for the UETC of the source

Ω𝐺𝑊(𝑘, 𝜏0) ≡ 3 𝒯𝐺𝑊𝐸Π
∗ 𝑘 Δ0

2(𝑘, 𝜏𝑓𝑖𝑛)
𝛿𝜏𝑓𝑖𝑛 = 𝜏𝑓 − 𝜏∗



Assuming for the UETC 𝐸Π
∗ 𝑘 ~

𝑘3 𝑘 < 𝑘∗

𝑘−𝑏 𝑘 > 𝑘∗

lnΩ𝐺𝑊
𝐸𝑁𝑉(𝑘, 𝜏0)

ln 𝑘ln 1/𝛿𝜏𝑓𝑖𝑛 

~𝑘3

ln 𝑘∗

~𝑘3 ln2[1 +ℋ∗/𝑘]
~𝑘−𝑏 ln2[1 +ℋ∗/𝑘]

~𝑘 ~𝑘−𝑏−2(𝑘 ≫ ℋ∗)
(𝑘 ≫ ℋ∗)

causality

Constant-in-time model for the UETC of the source

Ω𝐺𝑊(𝑘, 𝜏0) ≡ 3 𝒯𝐺𝑊𝐸Π
∗ 𝑘 Δ0

2(𝑘, 𝜏𝑓𝑖𝑛)
𝛿𝜏𝑓𝑖𝑛 = 𝜏𝑓 − 𝜏∗



𝐸𝑁
𝑣 𝑘 ~

𝑘5 (𝑘/𝑘𝑝𝑒𝑎𝑘 → 0) 𝐵𝑎𝑡𝑐ℎ𝑒𝑙𝑜𝑟

𝑘−2/3 (𝑘/𝑘𝑝𝑒𝑎𝑘 → ∞) 𝐾𝑜𝑙𝑚𝑜𝑔𝑜𝑟𝑜𝑣

𝐸Π 𝑘 ~

𝑘3 𝑘/𝑘∗ → 0

𝑘−2/3 𝑘/𝑘∗ → ∞

For a purely vortical velocity field with a Von Kármán spectrum

GW spectrum envelope for vortical turbulence in the constant-in-time model (flat spacetime)

lnΩ𝐺𝑊(𝑘, 𝜏0)

ln 𝑘ln 1/𝛿𝜏𝑓𝑖𝑛 ln 𝑘∗

~𝑘3
~𝑘 ~𝑘−8/3

Roper Pol et al. [2201.05630]

Gravitational Waves from decaying turbulence
𝛿𝜏𝑓𝑖𝑛 = 𝜏𝑓 − 𝜏∗



Conclusions

GW spectrum from sound waves (in the sound shell model) can be understood from the properties of the self-similar 
profiles and of the bubble nucleation history

For hybrids the GW peak scale is related to the distance between discontinuities instead of the sound-shell thickness 
(broader spectrum around the peak)

The contribution from slowly decaying MHD turbulence can be described with a constant-in-time UETC of the 
anisotropic stresses of the source
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How well do these models describe the results from numerical simulations? 



Conclusions

GW spectrum from sound waves (in the sound shell model) can be understood from the properties of the self-similar 
profiles and of the bubble nucleation history

For hybrids the GW peak scale is related to the distance between discontinuities instead of the sound-shell thickness 
(broader spectrum around the peak)

The contribution from slowly decaying MHD turbulence can be described with a constant-in-time UETC of the 
anisotropic stresses of the source

How well do these models describe the results from numerical simulations? 

Strong First-Order Phase Transitions cannot be treated with the linear sound wave 
phase approximation

For turbulence also the generation phase (not only the decaying part) 
can be relevant in the final GW spectrum



THANKS FOR YOUR ATTENTION!
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