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LHC =—— Standard Model Higgs (¢) has nonzerovevatT = 0

In the primordial plasma . Veff — VO(‘CbD + D2‘¢‘2T2 T

at finite temperature Thermal QFT
dominant contribution
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Minimum of the aVeff(|¢|,T)
potential at high T ’ 0|gb| =
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The way in which the transition from the symmetric phase (zero vev) to the
broken phase (nonzero vev) occurs depends on V¢

Let us consider the Standard Model case [9203203]

A
Vers (16, T) = D2(T? = TR I? — B2 T |13 + - |*

IfE + 0

A

Verr

tunnel

j - 3 i

2

In the Standard Model the EW
phase transition is a crossover
(E # 0 but small)

However in BSM theories we can
easily have first-order phase transitions
(e. g.in SUSY already at tree level)
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Gravitational Waves from sound waves

[Ongoing work in collaboration with C. Caprini, S. Procacci, A. Roper Pol]
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1
Tio" = Wiot UyUy + Prot Euy + 0P Oy — g1y (Eaa(b 0°¢ )

/ T OVere(P, T) \ Prot = P — Verr(d, T)

Wiot = W —

0T
v.TH =0 Full picture requires lattice simulations
l’l tsl\:/ [1504.03291][2409.03651][2505.17824]
o _ .
ch(a (I)) — acl) — 5friction What can we understand analytically?

|

nuto, ¢ ?
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Fluid perturbations from expanding scalar bubbles

1
Tio" = Wiot UyUy + Prot Euy + 0P Oy — g1y (E ds$ 0° P )
Simplifying assumptions:

1

- Flatspacetime guy = Ny P = > —a;T{ — €4

(+) Symmetric phase

+
- Bagequation of state = " Jaiokenphase. —  tot — asTs + €4
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Fluid perturbations from expanding scalar bubbles

T}Egt = Wiot uuuv + Ptot guv T aucl) avcl) —B LV E (I) aG(I)

Simplifying assumptions:

: 1
- Flatspacetime guy = Ny P = : —a;T{ — €4

(+) Symmetric phase

+ w4
- Bagequation of state = " Jaiokenphase. —  tot — atly + €4

+ _ * +
] ] Wiot = Ctot + Ptot
- Neglect scalar field profiles



Fluid perturbations from expanding scalar bubbles

pip install cosmoGW
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Fluid perturbations from expanding scalar bubbles

! ip install cosmo 1 2+ 3
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Fluid perturbations from expanding scalar bubbles

Properties of the profiles:

Compact support
vp(§) £0 for & <& <&

Discontinuity at ¢,

Deflagrations and hybrids have
an additional discontinuity at

€=U5h

pip install cosmoGW
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. . . . _ 3 ., (M4
The kinetic spectrumin the.bubbl.e e>fpan3|on phase v (t, k) — —j [t(n)] olk X f'(Z)
is an average over stochastic realizations

<Ul' (t, k)v]f‘ (t, k,)>x(n) t(n) f'(z) = —4m jo j1(z8) § vip(®) d§
0O ’~0

(i (6, )y (&, kD) o = i Jej 82 (ke = k) miy (D (¢ = £0)°1f' ()17

|

Average over nucleation locations (homogeneously distributed)
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Properties of |f'(z)|4

(vi (6, )vy (&, kD) oy = ki K 82 (e = k) mp () (¢ = £0)°lf ()17

From compact support of v;,, (£)

Large scales k = z/t(™ — 0 1 (2)|* = |fy]* 2°

Smallscales k = z/t(™ — oo ' (2)]* = |fs|? z~°

From the discontinuities of v;, ()
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3T -1
The ~ z* ends around Z1 ~ —— (gef + fb)
§w=0.6 2

— numerical
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Properties of | f'(2)]?

3T -1
The ~ z* ends around Z1 ~ —— (gef + fb)
§w=0.6 2

— numerical

The ~ z~%* begins around
107"

r —
(& — &) 1 (< e
Zy R XA (ng — Stw)_1 (¢s < Ew< V)

—1
\ (ff N gb) > vey)

10711 -

10716 4+

S¢— ¢p X AR, (sound shell thickness)
10°

10! 102 10? ff — fw — ’fsh — fw d!stancg bg’Fween
Z discontinuities

(for hybrids)



Properties of | f'(2)]?

V=2

A1 a4 ap
/ 2 "n2 .2 z ai 4 az
@l = 1561722 [14(2) | [1+(2) ]
a=0.1 Ew=0.6
: — numerical
Zcross _—— it |
107! A : £2
3| 1070 Double broken power law fit
N o
[N
107" 4
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Scales of | (2)|?

31T -1 ( ~1
2y ~ = (&5 + &) (Cr=&) oo
Zy =TT X 4 (ff — fw)_l(cs<fw<vc,)

Vey(@) \ (& — fb)_l (5> vey)

Z2
3y

¥1 —— £ (using AR-)
| — % (LCWG)
[2403.03723]

102 A
[ Much broader spectrum for hybrids than using

zy=1 x (§ —&) " o ART:

7. =11 X |C _ |—1 (Lisa Cosmology
\ : s~ Sw Working Group)
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Evolution of the fluid perturbations: before collisions

The kinetic spectrum in the bubble expansion phase
Is an average over stochastic realizations
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Evolution of the fluid perturbations: across collisions
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Evolution of the fluid perturbations: across collisions

The kinetic spectrum in the bubble expansion phase
Is an average over stochastic realizations

(vi(t, K)vj (t, k ,)>x8"), t5 .

Average over nucleation times
and collision times

We can model the nucleation history with a normalized lifetime distribution v(7')

Fi(teon k) = nb(tcoll)f dT v(T)T®|f'(kT)|?
0

/

Kinetic spectrum at collisions

Hindmarsh & Hijazi [1909.10040]



Evolution of the fluid perturbations: across collisions

o'}
FL(tCOllJ k) = Ny (tcoll)j dT V(T)T6|f’(kT)|2 < Kinetic spectrum at collisions
0
4
Largescalesk - 0  F, - k?F) k? ends around k; = =
(exponential
nucleation)
Z2
Smallscalesk - o F, — k_4anv k~% starts around kz ~ IB—

2.4



Consequences for the gravitational wave spectrum

Qew (To, k) = 3 Tew ff

T1 13

a=0.1,&, = 0.6, 074, /R« = 10

10—2_

1016,

— RH.-
— R.H.

R.H.
— RH.

=0.1
= 0.01
= 0.001

1073 1072 10—1 10

Roper Pol, Procacci, Caprini[2308.12943]

kER.

101

102

2 COS k(ty — 1) cosk(ty —15) En(k, 7, 75)

|

UETC for sound-waves computed from the kinetic spectrum
Hindmarsh & Hijazi [1909.10040]

Double broken power law fit for the peak of (0}, with scales
GW
k" = 1.2 X k4

kSW =~ 1.2 X k,



Gravitational Waves from turbulence

[Ongoing works in collaboration with C. Caprini, A. Roper Pol, M. Salomé (theory)
D. Figueroa, K. Marschall, A. Roper Pol (simulations)]



Introduction: first-order phase transitions
and gravitational waves

g T=100GeV. a =05, B/H, =10, v, = 0.95, £y, = 1 Constant-in-time model
10 R ! Roper Pol, Caprini et al. [2201.05630]

10 turbulence
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Introduction: first-order phase transitions
and gravitational waves

hQaw(f)

T, = 100 GeV, o = 0.5, B/H, = 10, v, = 0.95, £y, = 1 Constant-in-time model

108

turbulence

RALUEEELLLLLL L L Roper Pol, Caprini et al. [2201.05630]

How long does it take for turbulence

s/ N
sound waves to develop?®

Which fraction of energy goes into it?

How does the sourcing period affect
the final GW spectrum?

] How does turbulence evolve in the
fully relativistic regime?

107°

0__1 10_3 10_2 10_1 <— Credits: Alberto Roper Pol

f [HZ] Lisa Cosmology Working Group [2403.03723]



Gravitational Waves from decaying MHD turbulence

* |n a cosmological phase transition

run B1

scalar field gradients can generate
magnetic fields (Vachaspati et al. By | Hh=81x107
2021) leading, due to the high i E3 | k=65

run A | Hidte =140
run E5 | H.otg, =2.90

conductivity of the primordial
plasma (Arnold et al. 2003), to MHD
turbulence

, QGw (kaw) =
\ koSBT Bhx107H

« The GW spectrum from numerical N Hilton =
simulations of decaying MHD N
turbulence can be described with |
the constant-in-time model (Roper L 0

Pol et al. [2201.05630])




Constant-in-time model for the UETC of the source

min[TO,Tﬁn] dTl de

Qew (T, k) =3 Tow Jj T_l?COS k(to — 11) cos k(o — 75) En(k, 74, 75)
T
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Constant-in-time model for the UETC of the source

min[TO,Tﬁn] dTl de

Qew (T, k) =3 Tow Jj T_l;COS k(to — 11) cos k(o — 75) En(k, 74, 75)
T

*
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Gravitational Waves from decaying turbulence

. . . . ) , 5Tfin =T — Ty
For a purely vortical velocity field with a Von Karman spectrum

k> (k/kpear = 0) Batchelor k3 (k/k.— 0)
Ey(k) ~ - En(k) ~ - o

k=23 (k/kpear = ©©) Kolmogorov k2! (k/k., — )

—

GW spectrum envelope for vortical turbulence in the constant-in-time model (flat spacetime)
Roper Pol et al. [2201.05630]
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Conclusions

GW spectrum from sound waves (in the sound shell model) can be understood from the properties of the self-similar
profiles and of the bubble nucleation history

For hybrids the GW peak scale is related to the distance between discontinuities instead of the sound-shell thickness
(broader spectrum around the peak)

The contribution from slowly decaying MHD turbulence can be described with a constant-in-time UETC of the
anisotropic stresses of the source
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profiles and of the bubble nucleation history

For hybrids the GW peak scale is related to the distance between discontinuities instead of the sound-shell thickness
(broader spectrum around the peak)

The contribution from slowly decaying MHD turbulence can be described with a constant-in-time UETC of the
anisotropic stresses of the source

How well do these models describe the results from numerical simulations?

Strong First-Order Phase Transitions cannot be treated with the linear sound wave
phase approximation

For turbulence also the generation phase (not only the decaying part)
can be relevant in the final GW spectrum



THANKS FOR YOUR ATTENTION!
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