Gravitational Wave Memory from Primordial Black Holes

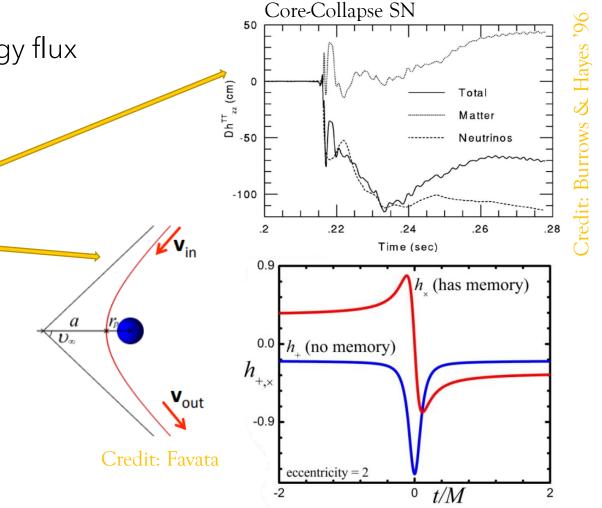
SILVIA GASPAROTTO

Seminar on the Interface of Particle Physics and Gravitational Waves

12/2/2025

"The Persistence of Memory" (also known as "The Soft Watches") Salvador Dalí, 1931

Linear/Ordinary Memory


Linear memory generated by unbound energy flux (e.g. EM radiation, matter)

Examples:

- Asymmetric neutrino emission in SN
- Black holes hyperbolic encounters

$$\Delta h_{ij}^{TT} = \frac{4\mu}{R} \Delta (v_{\infty,i} v_{\infty,j})^{TT}$$


Linear/Ordinary vs Non-linear/Null

Non linear GW memory

Christodoulou '91, Blanchet & Damour '92, Wiseman & Will '91...

GW of a binary system:

Credit: Mitman 2024

Persistent off-set of the GW strain: net displacement between two comoving observers

The GW itself sources GWs!

$$\partial^{\mu}\partial_{\mu}\bar{h}^{j,k} = 16\pi \left(T_{matter}^{jk} + T_{GW}^{jk}\right)$$

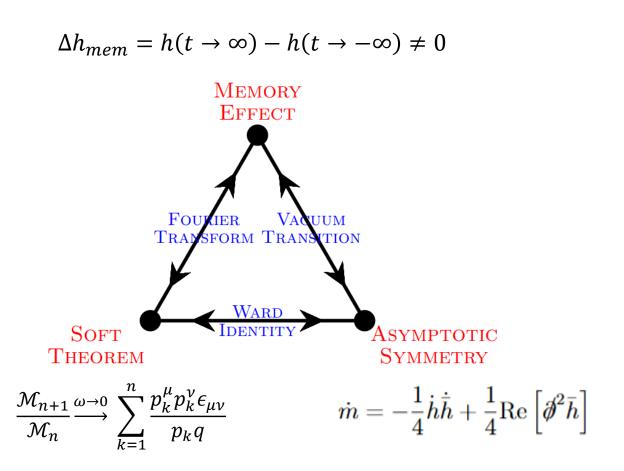
$$T_{GW}^{jk} = \frac{1}{R^2} \frac{dE_{GW}}{dtd\Omega} n_j n_k \sim \frac{c^3}{16\pi G} \left| \dot{h}_0(t, \Omega) \right|^2$$

Thorne Formula:

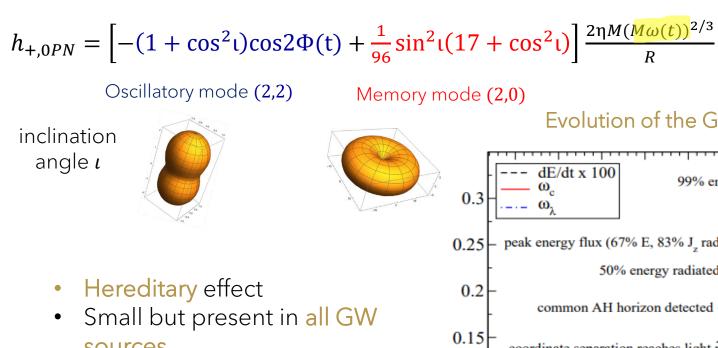
$$\delta \bar{h}_{ij}^{TT}(T_R) = \frac{4}{R} \int_{-\infty}^{T_R} dt' \left[\int \frac{dE_{GW}}{dt'd\Omega'} \frac{n'_j n'_k}{|1 - n' \cdot N|} d\Omega' \right]^{TT}$$

Null memory: generated by unbound, outgoing radiative energy flux to null infinity

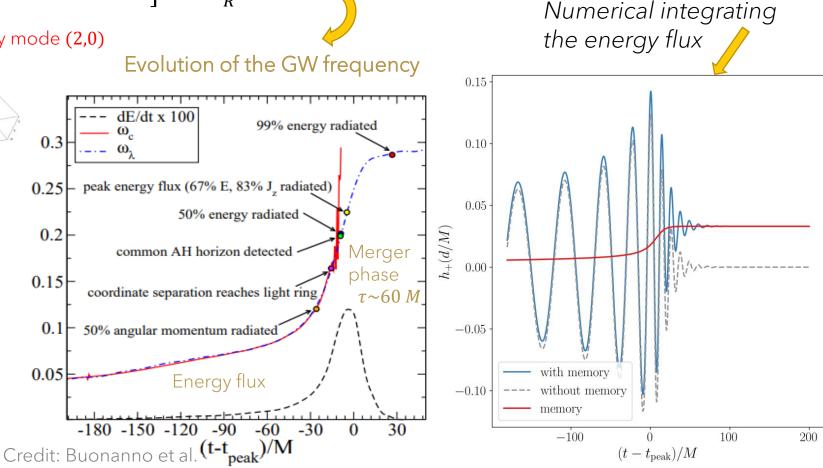
GW Memory and Infrared Diagram


Strominger and A. Zhiboedov 2016 Strominger lectures

The GW memory represents on of the corners of the infrared triangular diagram


BMS symmetry group: Symmetries of asymptotically flat spacetime at null finite

Gravitational memory: Physical consequence of the shift between different vacuum

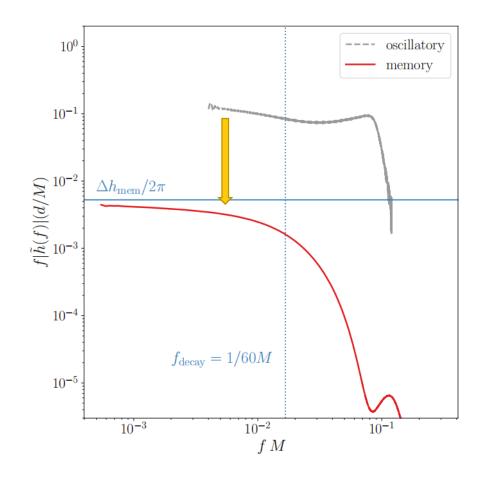

Soft theorem: statement about the quantum scattering amplitudes, related to the behavior of low energy (soft) gravitons

The memory signal for BH binaries

- sources
- It scales with energy radiated
- Main support close to merger phase

Detectability of the memory

Fourier Transform of a step function $\rightarrow -\frac{i\Delta h_{mem}}{2\pi f}$

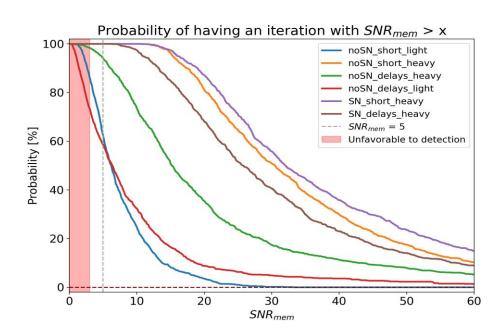

Characteristic strain for $f \ll f_{merger}$, $f \left| \tilde{h}(f) \right| \rightarrow \Delta h_{mem}/2\pi$

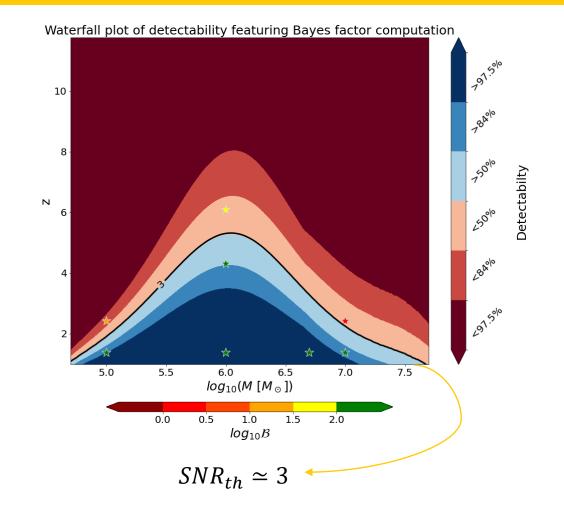
Current status of GW-memory searches: no detection so far by ground-based detectors (LVK) or PTA experiments.

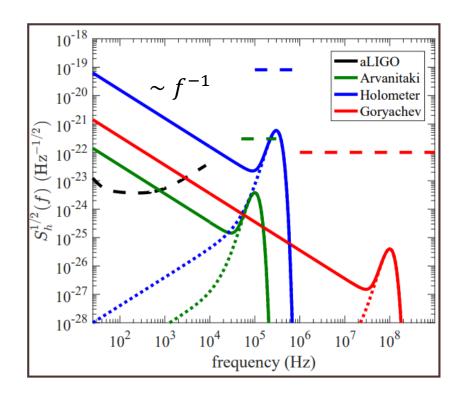
LVK: detection expected after O(2000) accumulated events PTAs: upper bound on memory amplitude $h_{mem} < 3 \times 10^{-14}$

Next generation prospects:

- Einstein Telescope & Cosmic Explorer: $O(1) yr^{-1}$
- LISA: Inchauspé, SG et al *PRD* 111 (2025) 4, 044044

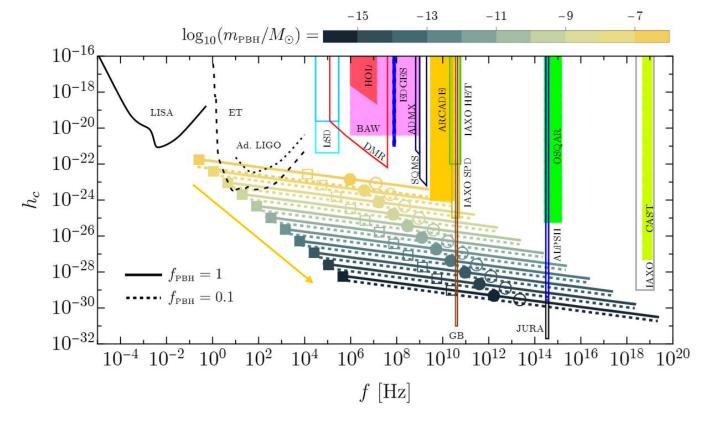

Probing GW memory with LISA

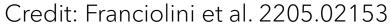

LISA fundamental Physics WG A.Cogez, **SG** et al (to appear)

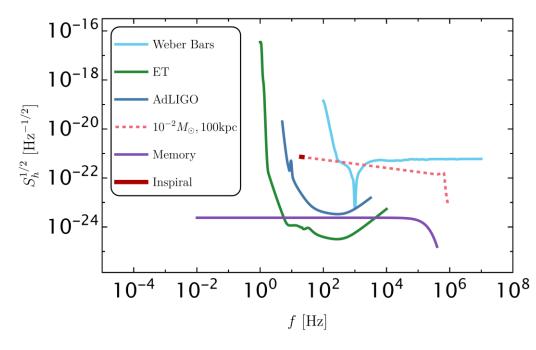

Evidence of memory in SMBH mergers

Parameter estimation through Bayesian analysis

Population study

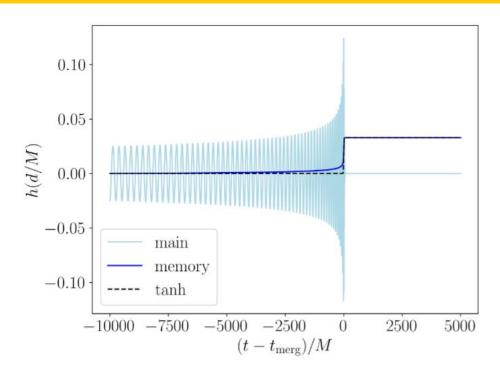





Parent Signals (Orphan memory signal)
PRL 118 (2017) 18, 181103 O.McNeill, Thrane & Lasky

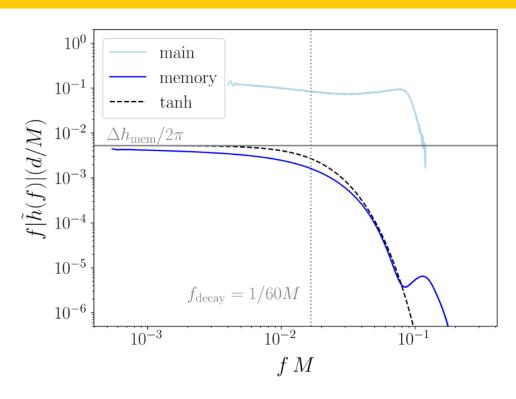
Ground-based detectors outperform proposed HF detectors for high-frequency sine-Gaussian GW signals

Memory from GWs at high frequencies



Memory and early inspiral low-frequency counterpart of a high-frequency merger

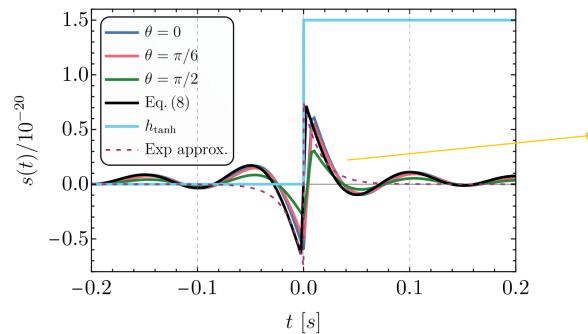
The case of PBH


SG, G. Franciolini, V. Domcke PRD 112 (2025) 10, 103021

Memory signal approximation

$$h_{tanh}(t) = \frac{\Delta h_{mem}}{2} \left[\tanh\left(\frac{t - t_{merg}}{\tau}\right) + 1 \right]$$
 with $\tau = 13 M$

$$\Delta h_{mem} \simeq 10^{-18} \sin^2(\iota) \left(\frac{M}{M_{\odot}}\right) \left(\frac{kpc}{d}\right)$$



$$\tilde{h}_{tanh}(t) \xrightarrow{f \ll \Delta \tau^{-1}} - i\Delta h_{mem} \left[\frac{1}{2\pi f} - \delta(f) \right]$$

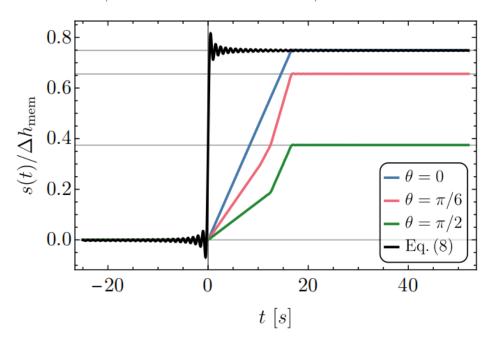
Almost universal memory signal

Band passed signal: $M_{tot} = 10^{-2} M_{\odot}$, $d = 1 \ kpc$

LIGO

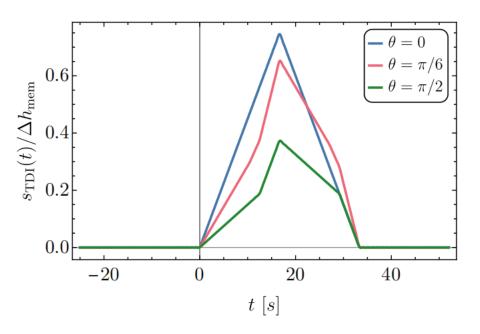
$$s(t) = \int_{f_{min}}^{f_{max}} df \, R(\mathbf{k}) \widetilde{h(f)} e^{i2\pi f t}$$

Oscillation frequency given by $f_{min}^{LIGO} \sim 10~Hz$


Signal depends only on amplitude, merger time, and sky position, the memory emerges as a simple and robust target for detection

One can do a match-filter search for such a universal signal with few free parameters!

Almost universal memory signal


Space-based interferometer (LISA)

Simple interferometer response

Response with no low-frequency cut-off

After TDI post-processing

First-generation TDI noise $s_{TDI} = s(t) - s(t - 2L)$

PBH Merger Rate

PBH merger rate in the early-universe scenario for monochromatic mass function

Local DM overdensity over the cosmological density

$$\frac{\mathrm{d}^{2}\mathcal{R}(t,d)}{\mathrm{d}\ln m_{1}\mathrm{d}\ln m_{2}} = \left(\frac{0.038}{\mathrm{kpc^{3}\,yr}}\right) \left[1 + \delta(d)\right] f_{\mathrm{PBH}}^{\frac{53}{37}} \left(\frac{t}{t_{0}}\right)^{-\frac{34}{37}} \\
\times \left[\frac{m_{1}m_{2}}{(m_{1} + m_{2})^{2}}\right]^{-\frac{34}{37}} \left(\frac{m_{1} + m_{2}}{10^{-12}M_{\odot}}\right)^{-\frac{32}{37}} \\
\times S(t, M, f_{\mathrm{PBH}}, \psi) \psi(m_{1}) \psi(m_{2}), \quad (17)$$

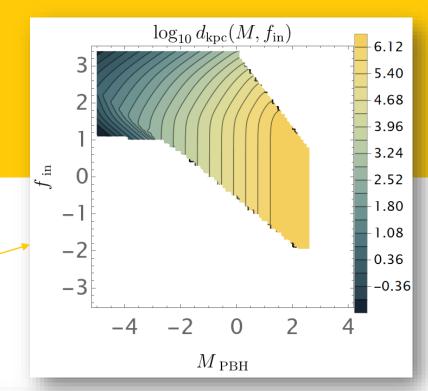
 10^{7} 10^{6} 10^{5} 10^{4} 10^{3} 10^{2} 10^{1} 10^{-1} 10^{-1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} 10^{11} 10^{12} $f_{\rm st}$ [Hz]

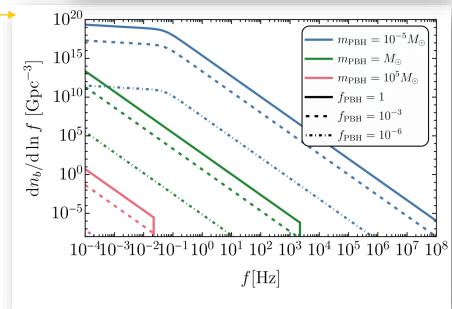
Fraction of PBH $f_{PBH} = \frac{\Omega_{PBH}}{\Omega_{DM}}$

Suppression factor from the interaction with the environment in the early and late universe

Normalized mass distribution

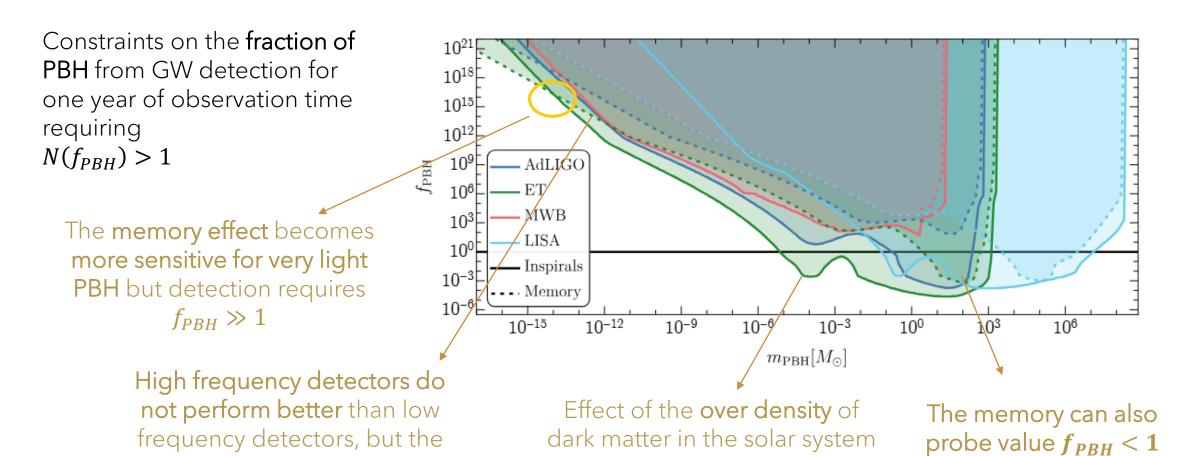
Number of detectable events


The total **number of detectable events** for a given detector during a certain observation window is


$$N_{
m det} = \int df_{
m in} \int dz rac{1}{(1+z)} rac{dV_c}{dz} rac{dn_b(t(z),d(z),f_{
m in})}{df_{
m in}} imes \Theta(\hat{
ho}(f_{
m in},z) - \hat{
ho}_{
m th})$$
 Selection factor

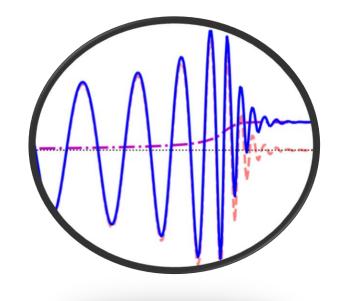
$$\frac{\mathrm{d}n_b(t,d,f)}{\mathrm{d}f} = \left| \frac{\mathrm{d}f_{\mathrm{coal}}(\tau(f))}{\mathrm{d}\tau} \right|^{-1} \mathcal{R}(t+\tau(f),d)$$

Many binary emitting quasi-monochromatic GWs in their early inspiral


Inspiral and memory probe **different stages** of the binary evolution

GW memory and PBH Bound

signal is complementary

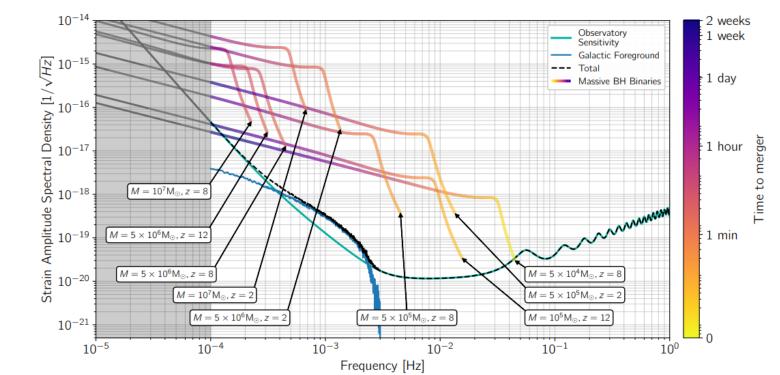

Match-filter search with a few free parameters

Memory and inspiral probe different stages of the PBH evolution

Inspiral signals, in general, outperform memory in SNR for early universe production of PBH

Memory becomes competitive only for extreme, out-of-band mergers, though detection would require unrealistically high PBH abundances.


Memory is a promising target for sources lacking a strong inspiral phase (e.g., PBH encounters, hyperbolic flybys, EMRIs, cosmic strings)


Conclusions

Thanks!

LISA: Laser Interferometer Space Antenna

LISA golden sources: Massive Black Hole Binaries (MBHBs)

S.G .et al [2301.13228]

Impact on Parameter Estimation

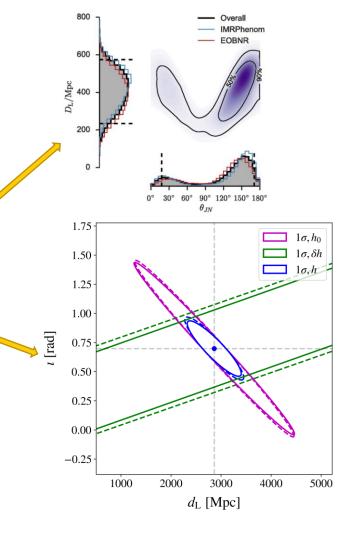
$$h(\vec{\theta},t) = h_{osc}(\vec{\theta},t) + \delta h_{mem}(\vec{\theta},t)$$

Forecasts for LISA:

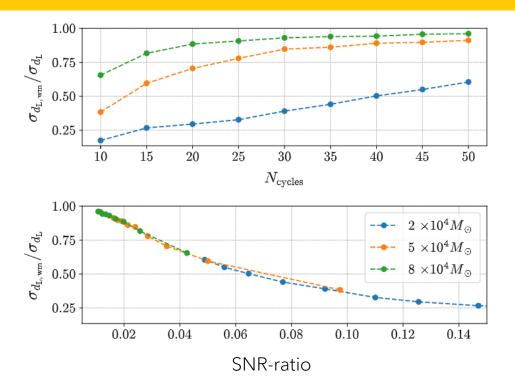
Fisher and covariance matrix:

$$\Gamma_{ij} = \left(\frac{dh}{d\theta_j} \middle| \frac{dh}{d\theta_j}\right), \qquad \Sigma_{ij} = \Gamma_{ij}^{-1}$$

$$(a|b) = 4 \int_{f_{min}}^{f_{max}} \frac{\mathcal{R}[a^*(f)b(f)]}{\mathcal{S}_n(f)} df$$

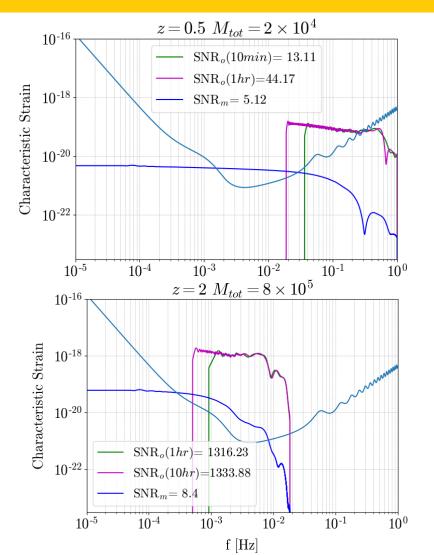

Signal-to-noise-ratio SNR:

$$\rho = \sqrt{(h|h)}$$


Opposite inclination dependence

Can it break the distance-inclination degeneracy?

- In extreme cases, it can help
- Complementary effect of Higher modes



The memory helps for "short" and "light" signals

Dependence on the mass and the duration of the signal pre-merger \longrightarrow the SNR-ratio changes!

Complementary effect to higher modes!

Massive Black Hole Binaries

8 different population models

Barausse & Lapi (2020), Barausse et al (2020)

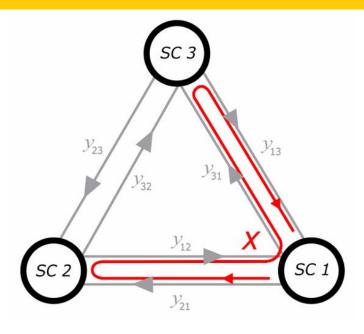
- o Population depends on the primary black holes origins:
 - Light seeds: collapse of first-generation stars (PopIII)
 - Heavy seeds: direct collapse of giant gas cloud.
- Merger delay ("Last parsec problem")
- Supernovae (SN) feedback in the evolution

 N_{th} number of events with detectable memory, i.e. $SNR_{th} \ge 1$ (or $SNR_{th} \ge 5$), in 4 years from

A relevant improvement of d_L is statistically unlikely even including unscheduled gaps

			$\rho \equiv SNR$
	Astrophysic	cal Catalogues	•
	Light seeds	Heavy seeds	
SN-delays	$N_{ m tot} = 47$	$N_{\rm tot} = 27.3$	
	$N_{\rm th} = 0.4(0.1)$	$N_{\rm th} = 21.2(10)$	
	$\langle \rho \rangle = 0.04$	$\langle \rho \rangle = 6$	75 700/
	$ \rho_{\rm max} = 7 $	$\rho_{\rm max} = 97$	75-78%
noSN-delay	$N_{\rm tot} = 191$	$N_{ m tot} = 10$	of events
	$N_{ m th} = 6 (1)$	$N_{ m th} = 7.5(4)$	
	$\langle \rho \rangle = 0.17$	$\langle \rho \rangle = 6.9$	
	$ \rho_{\rm max} = 11.64 $	$ ho_{ m max}=68.7$	
SN-short	$N_{\rm tot} = 149$	$N_{\rm tot} = 1245$	
Delays	$N_{\rm th} = 1 (1)$	$N_{\rm th} = 418 (33)$	
	$\langle \rho \rangle = 0.04$	$\langle \rho \rangle = 1$	_
	$\rho_{\rm max} = 5.01$	$\rho_{\rm max} = 43$	31-33% of
noSN-short	$N_{\rm tot} = 1203$	$N_{ m tot} = 1251$	events
Delays	$N_{\rm th} = 12(2)$	$N_{\rm th} = 392 (29)$	
	$\langle \rho \rangle = 0.06$	$\langle \rho \rangle = 1.1$	
	$\rho_{\rm max} = 17$	$ \rho_{\rm max} = 51 $	

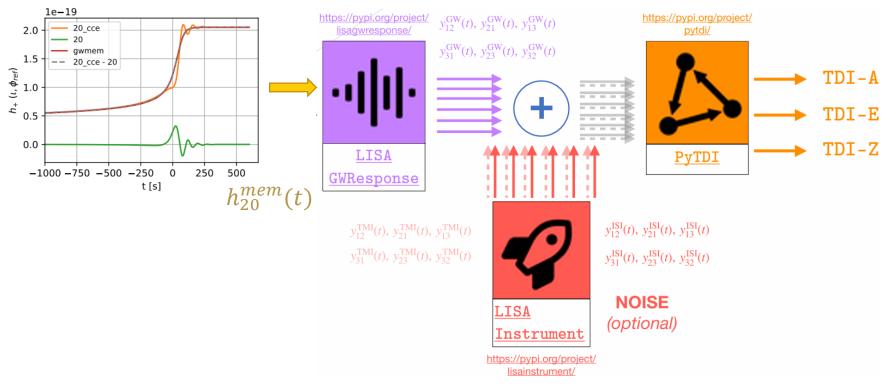
LISA GW Response


Delayed Received Laser Noise GW Signal L2/C L3/C L3/C L3/C L3/C L3/C L3/C L3/C L3/C L3/C

The actual observable is the Doppler modulation of the laser between spacecrafts $y = \left(\frac{\Delta v}{v_0}\right) = y_{sc} + y_{orb} + y_{GW}(+y_{noise})$

$$y_{ij}^{\text{GW}} = \frac{1}{2} \frac{\epsilon^a \epsilon^b}{1 - \vec{\epsilon} \cdot \vec{k}} \left[h_{ab} \left(ct_r^{(i)} - \vec{k} \cdot \vec{x}_r^{(i)} \right) - h_{ab} \left(ct_e^{(i)} - \vec{k} \cdot \vec{x}_e^{(i)} \right) \right]$$

$$\sim \dot{h} \quad 1^{st} \text{ order transfer function}$$


H. Inchauspé, **SG** et al [2406.09228]

Time Delay Interferometry (TDI) → combining measurements from across the constellation with appropriate time delays to suppress the laser noise while retaining the GW signal.

Second-generation TDI acts as a high-order differentiator

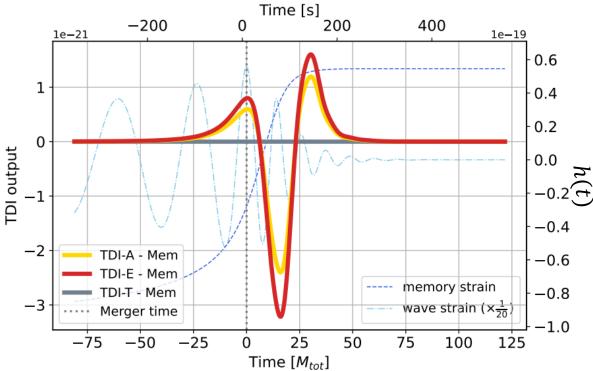
LISA simulation workflow

Second generation TDI X variable is

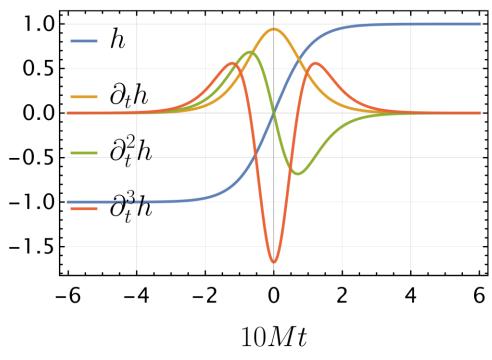
$$X_{2} = X_{1.5} + \mathbf{D}_{13121}y_{12} + \mathbf{D}_{131212}y_{21} + \mathbf{D}_{1312121}y_{13}$$

$$+ \mathbf{D}_{13121213}y_{31} - \left[\mathbf{D}_{12131}y_{13} + \mathbf{D}_{121313}y_{31} + \mathbf{D}_{1213131}y_{12} + \mathbf{D}_{12131312}y_{21}\right],$$

with


$$X_{1.5} = y_{13} + \mathbf{D}_{13}y_{31} + \mathbf{D}_{131}y_{12} + \mathbf{D}_{1312}y_{21} - (y_{12} + \mathbf{D}_{12}y_{21} + \mathbf{D}_{121}y_{13} + \mathbf{D}_{1213}y_{31}).$$

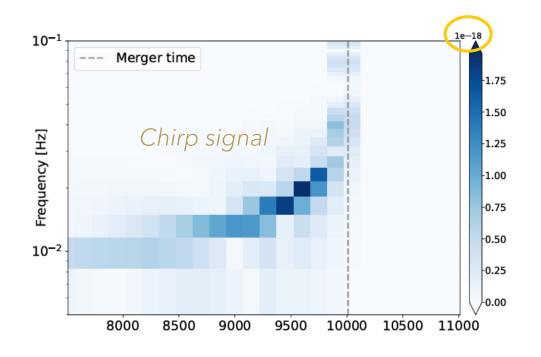
Delay operator:

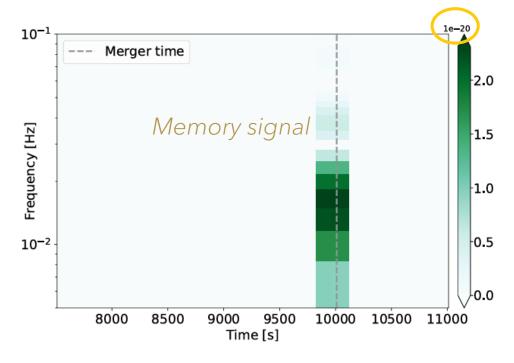

$$\mathbf{D}_{ij}x(t) = x(t - L_{ij}(t)) \xrightarrow{FT} \tilde{\mathbf{D}}_{ij}\tilde{x}(f) = \tilde{x}(f) e^{-2\pi i f L_{ij}(t)}$$

LISA response to GW Memory: time domain

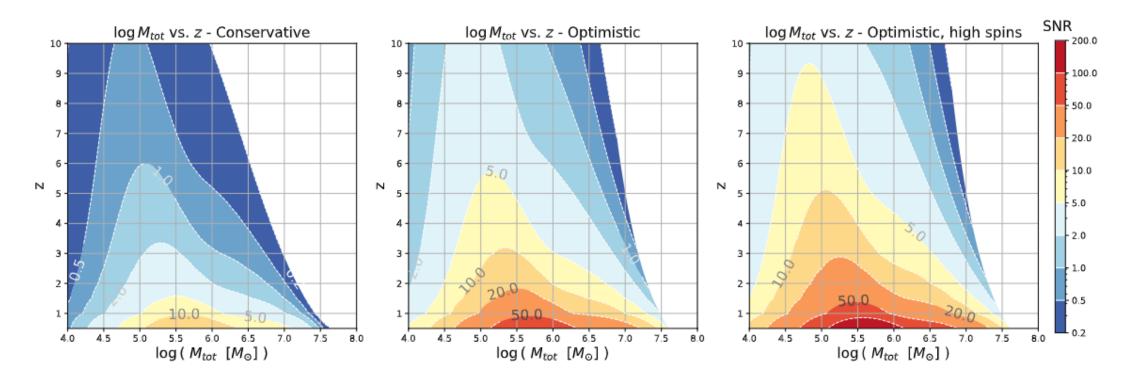
GW memory imprint of a binary merger with $M_{tot}=10^6 M_{\odot}$, q=1, z=1, $\iota=\frac{\pi}{2}$

Burst-like signal: We don't observe the persistent off-set of the memory, but just its time-variation $X \propto \partial^3 h$



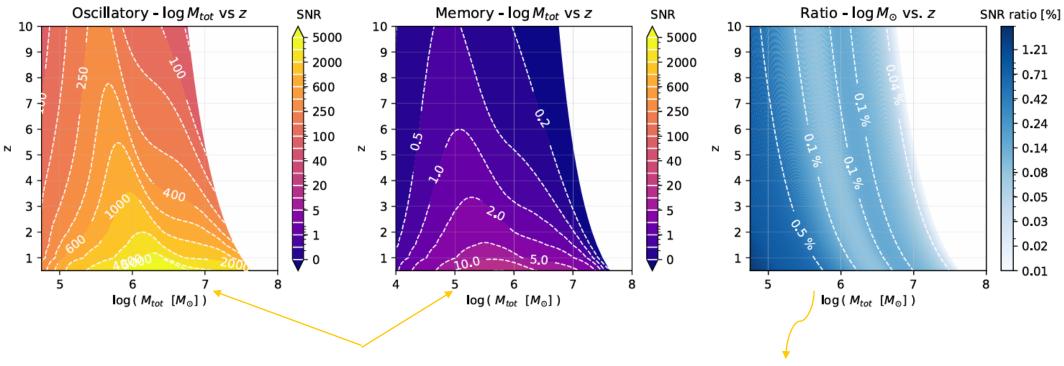

$$h^{mem} = \Delta h \tanh\left(\frac{t-t_c}{\Delta T}\right)$$
 with $\Delta T = 60 M$

Time-Frequency representation


Oscillatory and memory signals have very separate time-frequency representation.

Can we use this to separate the two?

Scientific Reach of LISA: Memory Waterfall Plots


Average situation

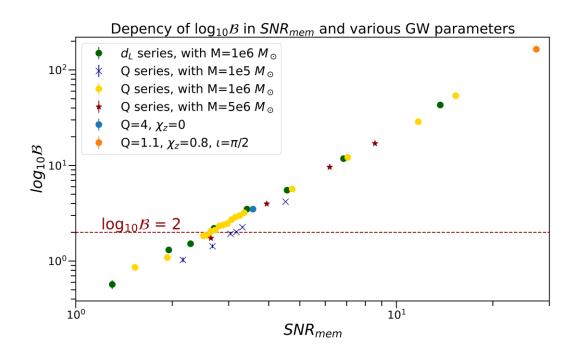
Equal mass ratio, edge-on, optimal sky direction

With aligned spins $\chi = 0.8$

SNR Waterfall: Oscillatory vs Memory


Results for the conservative baseline

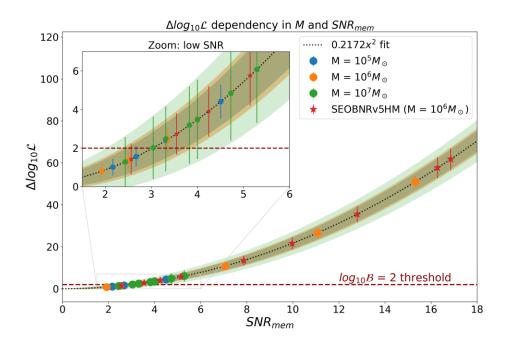
SNR peaks at different total masses reflecting the different frequency dependence

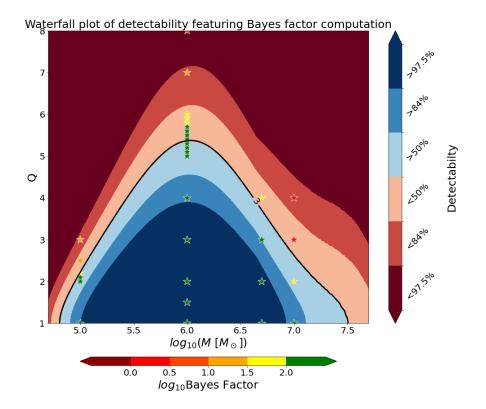

The SNR ratio can be up to a few percent for edge-on systems

SNR vs SMBH population models

LISA fundamental Physics WC A.Cogez, **SG** et al (to appear)

Bayes factor computation

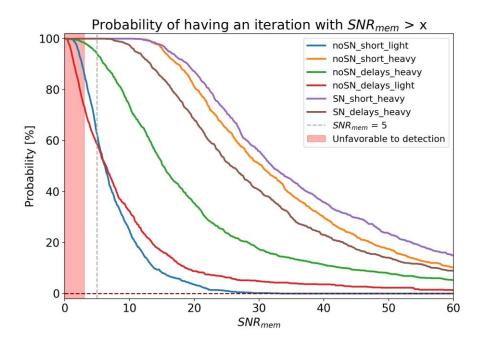

Bayes factor:
$$\mathcal{B} = \frac{\mathbf{Z}_{o+mem}}{\mathbf{Z}_{o}}$$
 with evidence $\mathbf{Z} = p(d|m)$


B	$\log_{10} \mathcal{B}$	Interpretation
[1, 3]	$[0, \frac{1}{2}]$	Barely worth mentioning
[3, 10]	$[\frac{1}{2}, 1]$	Substantial
[10, 32]	$[1, \frac{3}{2}]$	Strong
[32, 100]	$[\frac{3}{2}, 2]$	Very strong
$[100, +\infty[$	$[2,+\infty[$	Decisive

Decisive evidence for $SNR_{mem} \sim 3$

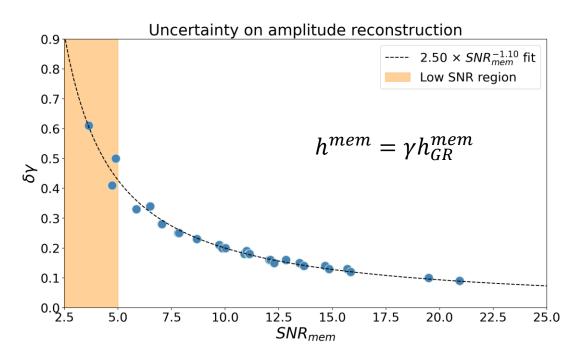
Full parameter exploration

$$\log_{10} \mathcal{B} \approx \log_{10} \mathcal{L}^{o+mem}(d|\theta_{source}) - \log_{10} \mathcal{L}^{o}(d|\theta_{source}) = \Delta \log_{10} \mathcal{L}$$



Latest updates or population studies

SN	Delays	Seeds	Nb of events detected	Nb of events with $SNR_{mem} > 3$	Nb of events with $SNR_{mem} > 5$	Nb of events to reach $\log_{10} B^{cumul} > 2$
Yes	Short	Light	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	N\A
	delays	Heavy	1024^{+46}_{-47}	87^{+16}_{-15}	37^{+10}_{-10}	$7.0^{+0.7}_{-0.6}$
	Delays	Light	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	N\A
	Delays	Heavy	$21^{+8.0}_{-6.0}$	$11^{+6.0}_{-5.0}$	$8.0^{+5.0}_{-4.0}$	$1.7^{+0.7}_{-0.4}$
No	Short	Light	38.0^{+10}_{-10}	$2.0^{+3.0}_{-2.0}$	$1.0^{+2.0}_{-1.0}$	$10.8^{+8.7}_{-4.5}$
	delays	Heavy	1033^{+48}_{-52}	81^{+16}_{-15}	$32^{+10}_{-9.0}$	$7.3^{+0.8}_{-0.7}$
	Delays	Light	$13.0^{+6.0}_{-6.0}$	$1.0^{+3.0}_{-1.0}$	$1.0^{+2.0}_{-1.0}$	$5.2^{+4.6}_{-2.2}$
	Delays	Heavy	$8.0^{+5.0}_{-4.0}$	$4.0^{+3.0}_{-3.0}$	$3.0^{+3.0}_{-3.0}$	$1.8^{+1.4}_{-0.6}$

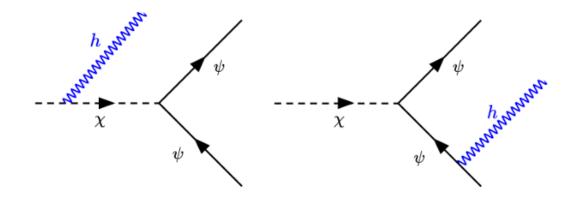

TABLE V: Table with the expectation of detection for different models, using Barausse's populations. The values are provided as $\operatorname{median}_{-2\sigma}^{+2\sigma}$ to reflect the asymmetries of the distributions.

Latest updates or population studies

SN	Delays	Seeds	Nb of events detected	Nb of events with $SNR_{mem} > 3$	Nb of events with $SNR_{mem} > 5$	Nb of events to reach $\log_{10} B^{cumul} > 2$
Yes	Short	Light	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	N\A
	delays	Heavy	1024_{-47}^{+46}	87^{+16}_{-15}	37^{+10}_{-10}	$7.0^{+0.7}_{-0.6}$
	Delays	Light	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	N\A
	Delays	Heavy	$21^{+8.0}_{-6.0}$	$11^{+6.0}_{-5.0}$	$8.0^{+5.0}_{-4.0}$	$1.7^{+0.7}_{-0.4}$
No	Short	Light	38.0^{+10}_{-10}	$2.0^{+3.0}_{-2.0}$	$1.0^{+2.0}_{-1.0}$	$10.8^{+8.7}_{-4.5}$
	delays	Heavy	1033^{+48}_{-52}	81^{+16}_{-15}	$32^{+10}_{-9.0}$	$7.3^{+0.8}_{-0.7}$
	Delays	Light	$13.0^{+6.0}_{-6.0}$	$1.0^{+3.0}_{-1.0}$	$1.0^{+2.0}_{-1.0}$	$5.2^{+4.6}_{-2.2}$
	Delays	Heavy	$8.0^{+5.0}_{-4.0}$	$4.0^{+3.0}_{-3.0}$	$3.0^{+3.0}_{-3.0}$	$1.8^{+1.4}_{-0.6}$

TABLE V: Table with the expectation of detection for different models, using Barausse's populations. The values are provided as $\operatorname{median}_{-2\sigma}^{+2\sigma}$ to reflect the asymmetries of the distributions.

- GW memory contributes complementary angular information to the waveform
- After the LISA response and TDI processing, the memory manifests as a burst-like event → not sensitive to zero frequency shift
- 3. Extended SNR analysis: sky map, mass, redshift, spin, mass ratio
- 4. The SNR ratio is maximized at low total mass and redshift → relevant of Intermediate black Hole binaries/ out-of-band mergers (→ Memory from PBH mergers paper)
- 5. After Bayesian analysis, we find that for decisive detection $SNR_{mem}^{thres} \approx 3$
- 6. LISA is likely to detect several memory events even with high SNR → important confirmation for GR

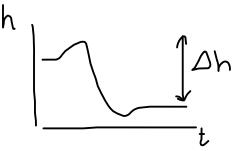

Outcomes

GW memory from the early universe

Gravitational wave memory modifies the **tail** of the GW spectrum → relevant for detection

The memory and the soft radiation are related through the soft theorem

Are the calculation for Ω_{GW} equivalent?


GW bremsstrahlung decays $\chi \rightarrow \psi \bar{\psi} + h$

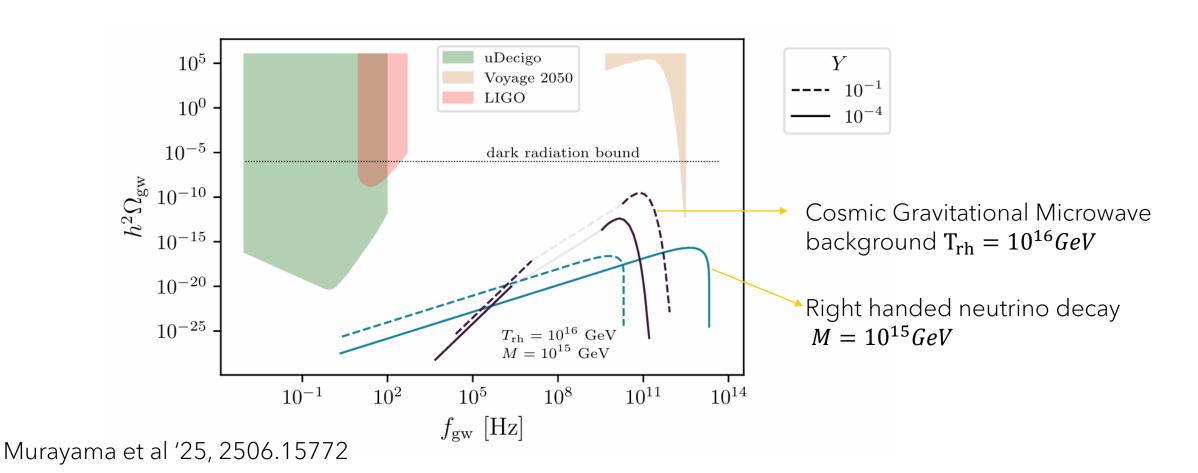
Decay rate
$$\Gamma_{\chi \to \psi \overline{\psi}} = \frac{Y^2 m_{\chi}}{8\pi}$$

Equivalence of the calculation

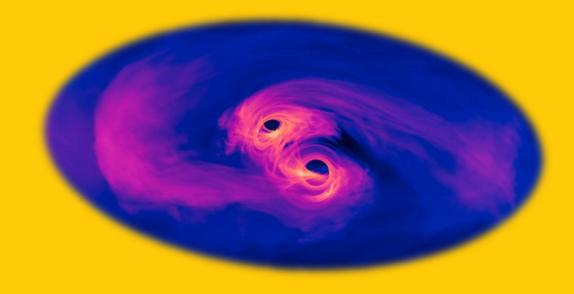
Memory background

$$\frac{d\Gamma_{br}}{dlnE} = \frac{Y^2 m_{\chi}^3}{64\pi^3 m_{pl}^2} \qquad E \ll m_{\chi}$$

$$\delta h_{ij}^{TT}(u, r, \Omega) = 2 \frac{GM}{r} \Theta(u) \epsilon_{ij}^{+}$$


$$\Omega_{GW} = \frac{E}{\rho_c} \int dt \, n_{\chi} \left(\frac{a}{a_0}\right)^3 \frac{d\Gamma_{br}}{dlnE}$$

$$\Omega_{GW} = \frac{\pi}{2G\rho_c} \int dz \, f^3 \left\langle \left| \tilde{h}_+(f) \right|^2 + \left| \tilde{h}_\times(f) \right|^2 \right\rangle \frac{\mathrm{d}^{\#}}{\mathrm{d}t\mathrm{d}z}$$


$$\Omega_{GW} = \frac{2fG\rho_{\chi}\Gamma m_{\chi}}{H} \left(\frac{a_D}{a_0}\right)^3$$

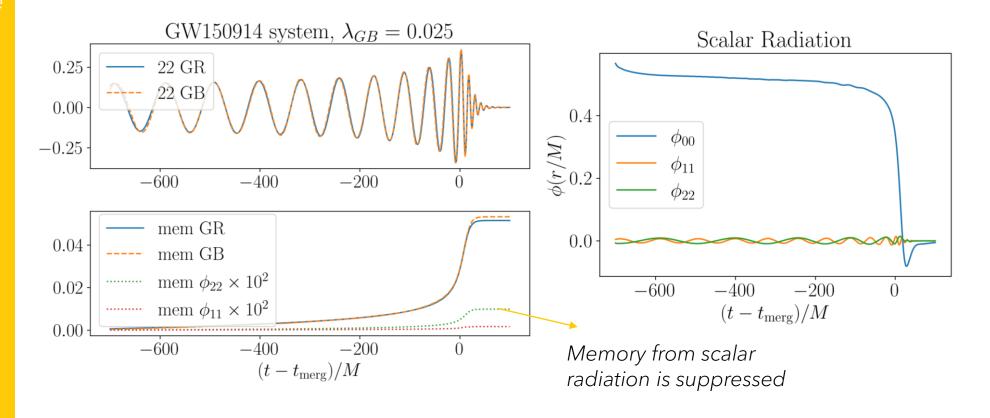
$$\frac{\mathrm{d}^{\#}}{\mathrm{d}t\mathrm{d}z} = \frac{\Gamma}{1+z} n_{\chi} \frac{4\pi r^{2}}{H(z)}$$

Gravitational wave spectrum

Memory for tests of GR?

- Does the memory provide complementary information?
- How the memory is modified in beyond GR theories?

L.Heisenberg et al 2303.02021


$$\delta h_H^{lm}(u,r) = \frac{1}{r} \sqrt{\frac{(l-2)!}{(l+2)!}} \int_{S^2} d^2 \Omega' \, \bar{Y}^{lm}(\Omega')$$

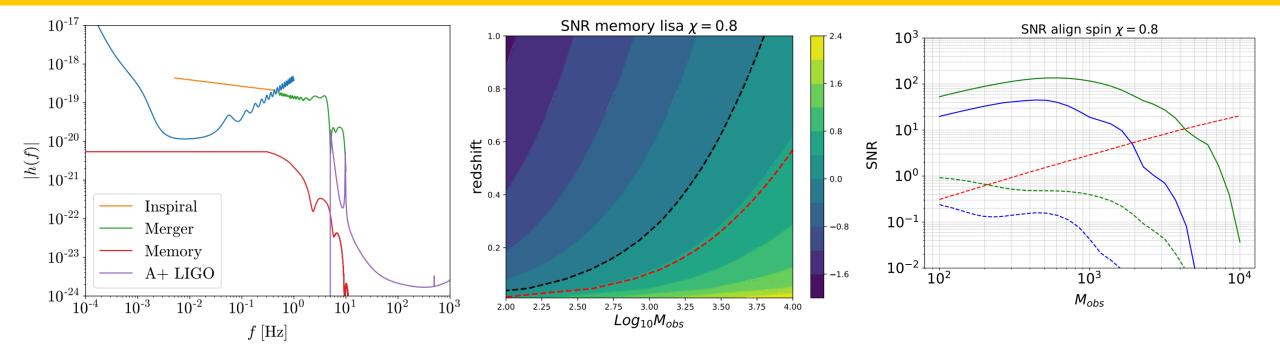
$$\times \int_{-\infty}^u du' \, r^2 \left\langle |\dot{\hat{h}}_+|^2 + |\dot{\hat{h}}_\times|^2 + \sum_{\lambda=1}^N |\dot{\hat{\psi}}_\lambda|^2 \right\rangle$$

Memory sourced by every other channe of radiation

Gasparotto, Zosso, Areste Salo...to appear

Memory in Gauss-Bonnet

- Energy radiated in the 00 mode does not directly generate memory
- Merger is louder → higher memory
- Direct coupling with matter → memory in the 00 mode is dominant in the scalar polarization


- Relevance of the memory for sources of GW at high frequency → PBH and early universe
- Relation of the memory and soft radiation
- Possible use of the memory as a complementary probe for beyond GR theories

Conclusions

Thank you!

Intermediate Mass Black Holes

Example of multi-band event between LISA and LIGO $M=4\times 10^3 M_{\odot}$, z=0.05, $\chi=0.8$, q=1.2; $SNR_{LIGO}=17$, $SNR_{LISA}=20$ The memory decreases by half the uncertainty on d_L

The memory computation

Thorne Formula
$$\delta \bar{h}_{ij}^{TT}(T_R) = \frac{4}{R} \int_{-\infty}^{T_R} dt' \left[\int \frac{dE_{GW}}{dt' d\Omega'} \frac{n'_j n'_k}{|1 - n' \cdot N|} d\Omega' \right]^{TT} \longrightarrow \frac{1}{R^2} \frac{dE_{GW}}{dt d\Omega} n_j n_k \sim \frac{c^3}{16\pi G} \left| \dot{h}_0(t, \Omega) \right|^2$$
Harmonic decomposition of the energy
$$h_+ - i h_\times = \sum_{\ell \ge 2} \sum_{|m| \le \ell} h^{\ell, m} (u, r) = \frac{1}{R^2} \frac{dE_{GW}}{dt d\Omega} n_j n_k \sim \frac{c^3}{16\pi G} \left| \dot{h}_0(t, \Omega) \right|^2$$

$$+ \int d\Omega Y_{\ell m}^* - 2Y_{\ell' m'}^* - 2Y_{\ell'' m''} \int_{-\infty}^{u} du' \dot{h}_0^{*\ell' m'} \dot{h}_0^{\ell'' m''}, \quad (4)$$

$$\rightarrow \text{Dominant term is fo}$$

$$\rightarrow \text{dominant memo}$$

Harmonics decomposition of the oscillatory GW source as input

$$\propto \int e^{i(m'-m''-m)\phi} d\phi,$$

Angular integral,

Selection rules

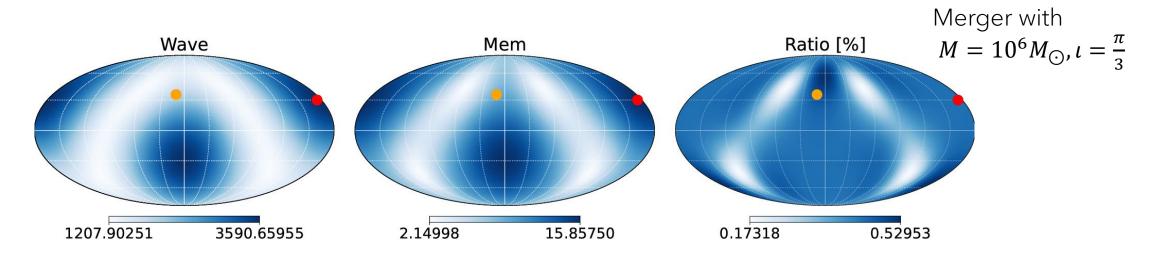
$$\dot{h}_{l'm'}\dot{h}_{l''m''}^* \propto x^n e^{-i(m'-m'')\varphi},$$

$$x = (M\omega)^{2/3}$$

$$\frac{1}{R^2} \frac{dE_{GW}}{dt d\Omega} n_j n_k \sim \frac{c^3}{16\pi G} \left| \dot{h}_0(t, \Omega) \right|^2$$

Harmonic decomposition of the energy flux

$$h_{+} - ih_{\times} = \sum_{\ell \geq 2} \sum_{|m| \leq \ell} h^{\ell,m} (u,r) _{-2} Y_{\ell m}(\iota, \phi)$$


Dominant term is for m' = m'' = 2

→ dominant memory

$$m=0$$
, $l=2$ mode

Non-oscillating integrand

SNR vs Sky Localization

SNR sky map for the primary wave (left), the memory signal (center) and the percent ratio between the (right).

The yellow and red dots indicate the average and maximal memory SNR sky-locations

Baseline	q	χ	inclination ι [rad]	lat. β [rad]	long. λ [rad]	pixel p
1. Conservative	2.5	0.0	1.047	0.62	0.20	145
2. Optimistic	1.0	0.0	1.571	0.52	3.24	192
3. Opt. & Spin.	1.0	0.8	1.571	0.52	3.24	192