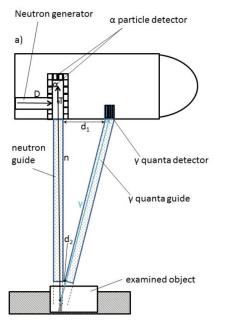


Review of Plastic Scintillators for Neutron Detection

Łukasz Kapłon

Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University

13.09.2019

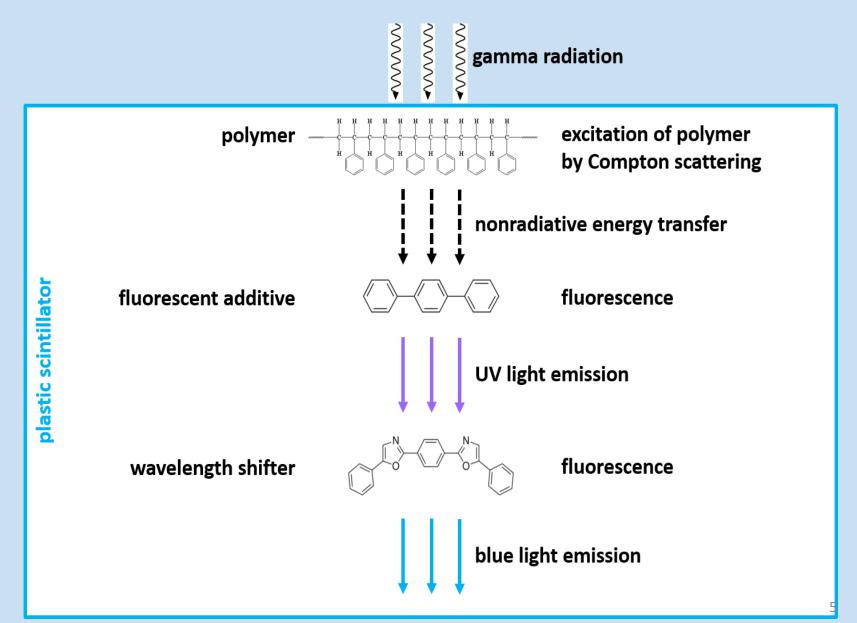

Outline

- 1) Light emission mechanism in plastic scintillators
- 2) Emission and absorption spectra
- 3) Radical bulk polymerization
- 4) Chemical components in standard plastic scintillators:
 - polymers;
 - UV fluorescent additions;
 - blue fluorescent additions.
- 5) Chemistry of plastic scintillators for neutron detection with:
 - boron;
 - gadolinium;
 - puls shape discrimination.
- 6) Summary

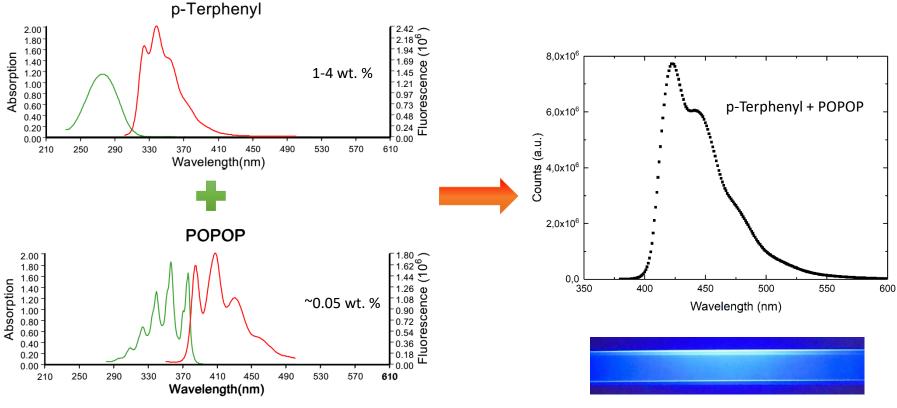
Motivation

Develop fast plastic scintillators loaded with elements interacting with neutrons as boron or gadolinium for neutron detection in:

- SABAT (Stoichiometry Analysis by Activation Techniques) project for non-invasive detection of hazardous materials in the aquatic environment;
- homeland security portal monitors installed in seaports, airports or at borders crossing points for detection of explosives and illicit drugs;
- physics experiments using time of flight, fast neutron counting, thermal neutron detection and pulse shape discriminating of gamma and fast neutron signals.

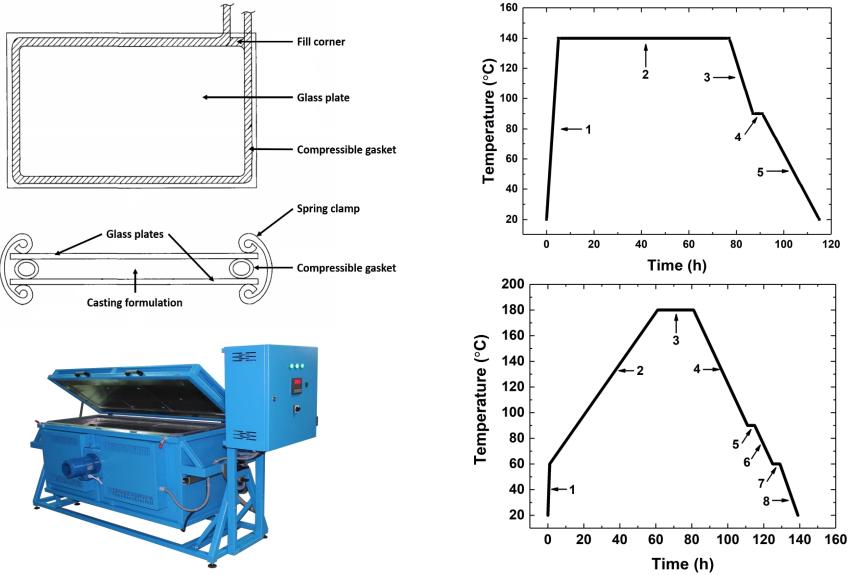


M. Silarski et al., Project of the Underwater System for Chemical Threat Detection, Acta Phys. Polon. A 127 (2015) 1543

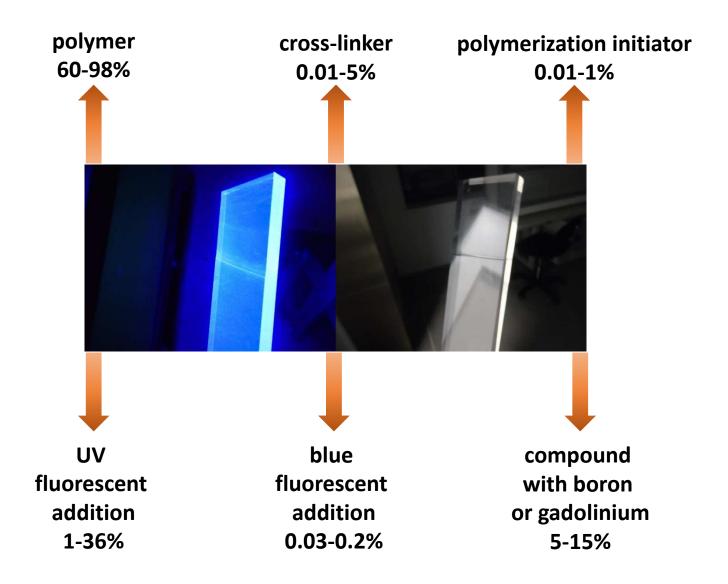

Properties of selected scintillators

Scintillator	Light yield [ph/MeV]	Decay time [ns]	Wavelength of maximum emission [nm]	Refractive index	Density [g/cm³]	Price [US\$/cm ³]	
			Inorganic				
Nal(TI)	37 700	230	415	1.85	3.67	6	
⁶ Li glass	2 000	60	390-430	1.56	2.60	1 500	
BaF ₂	10000/1400	630/0.8	315/220	1.50	4.88	15	
YAP	18 000	27	350	1.94	5.55	100	
LSO	30 000	40	420	1.82	7.40	60	
LYSO	32 000	40	420	1.81	7.10	70	
BGO	8 200	300	480	2.15	7.13	35	
PbWO ₄	100/31	10/30	420/425	2.20	8.28	6	
LaBr ₃ (Ce)	63 000	16	380	1.90	5.08	500	
		0	rganic plastic				
BC-420	12 240	1.5	391	1.58	1.03	0.11-0.32	
BC-422Q	2 200	0.7	370	1.58	1.03	0.11-0.32	
BC-452	6 400	2.1	424	1.58	1.08	3	
BC-454	9 600	2.2	425	1.58	1.03	11-12	
	Organic liquid						
BC-505	16 000	2.5	425	1.50	0.88		
BC-509	4 000	3.1	425	1.40	1.61	0.07-0.25	
BC-521	12 000	4.0	425	1.50	0.89		
Organic crystalline							
Stilbene	14 000	3.5	390	1.64	1.22	-	
Anthracene	20 000	30	445	1.62	1.25	-	
P-terphenyl	27 000	3.7	420	1.65	1.23	-	

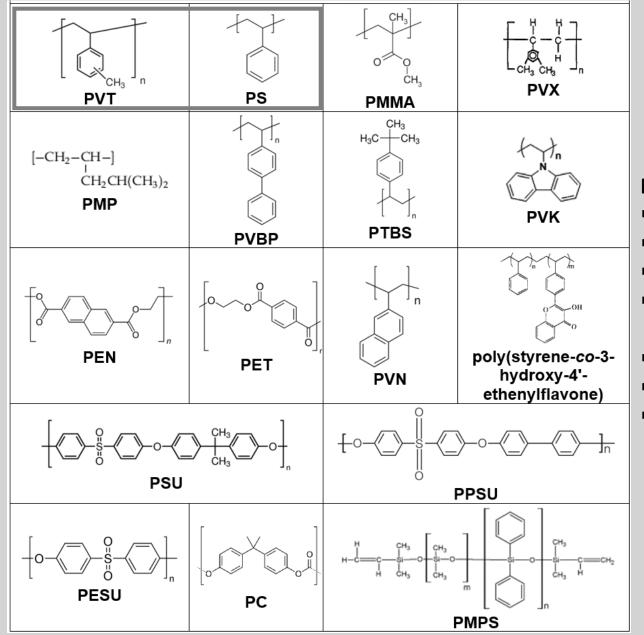
Scintillation principles: energy transfer and light emission mechanism


Scintillation principles: emission and absorption spectra

Absorption (green) and emission (red) spectra of two fluorescent substances commonly used in plastic scintillators Emission spectrum of plastic scintillator with p-Terphenyl and POPOP

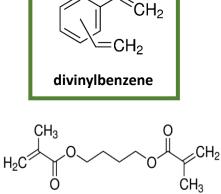

p-Terphenyl emission spectrum overlaps with POPOP absorption spectrum

Radical bulk polymerization: cell casting

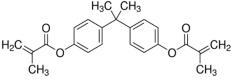


Ł. Kapłon et al., Plastic scintillators for positron emission tomography obtained by the bulk polymerization method, BAMS 10, 27 (2014)

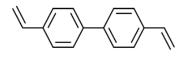
What is inside plastic scintillators for neutron detection?

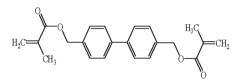


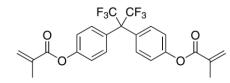

Chemical components in plastic scintillators: polymers


- amorphous;
- transparent to visible light;
- contain aromatic unit;
- glass transition temperature 100-220 °C;
- density 1.00-1.36 g/cm³;
- refractive index 1.46-1.68;
- manufactured by bulk polymerization.

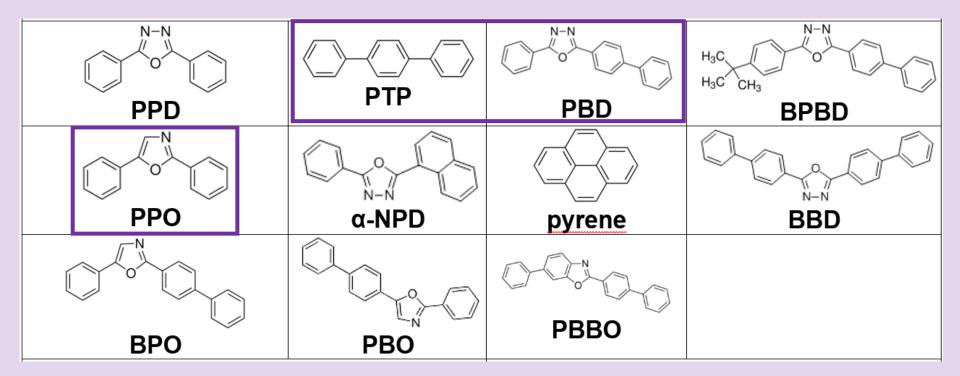
Chemical components in plastic scintillators: cross-linkers



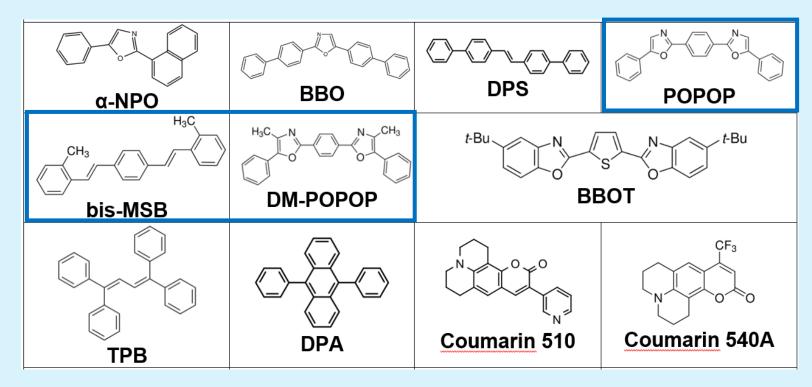

1,4-butanediol dimethacrylate


bisphenol A dimethacrylate

4,4-divinyl-p-biphenyl


4,4-bis-methylene-2-methacrylate-biphenyl

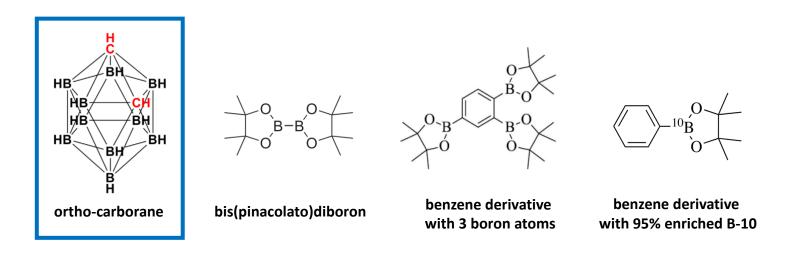
4,4'(hexafluoroisopropylidene) diphenyl dimethacrylate


- improves mechanical properties (hardness) of polymers;
- increase glass transition temperature;
- transparent to visible light;
- contain aromatic units with two double bonds.

Chemical components in plastic scintillators: UV fluorescent additions

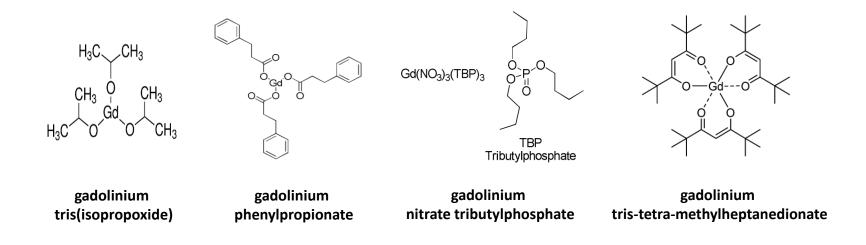
- contain aromatic units;
- absorb energy from polymer ~ 280-330 nm;
- emitt UV light ~ 330-400 nm;
- hight fluorescence quantum yield up to 100%;
- fast decay time near 1-2 ns;
- high solubility in monomer for high energy transfer (2-4 wt. %);
- chemical stability and temperature tolerance in polymerization process at 80-180 °C.

Chemical components in plastic scintillators: blue fluorescent additions



- contain aromatic units;
- absorb energy from UV additions ~ 340-370 nm;
- emitt blue light ~ 400-490 nm;
- hight fluorescence quantum yield up to 100%;
- fast decay time near 1-2 ns;
- moderate solubility in monomer for emission shift (0.03-0.2 wt. %);
- chemical stability and temperature tolerance in polymerization process at 80-180 °C.

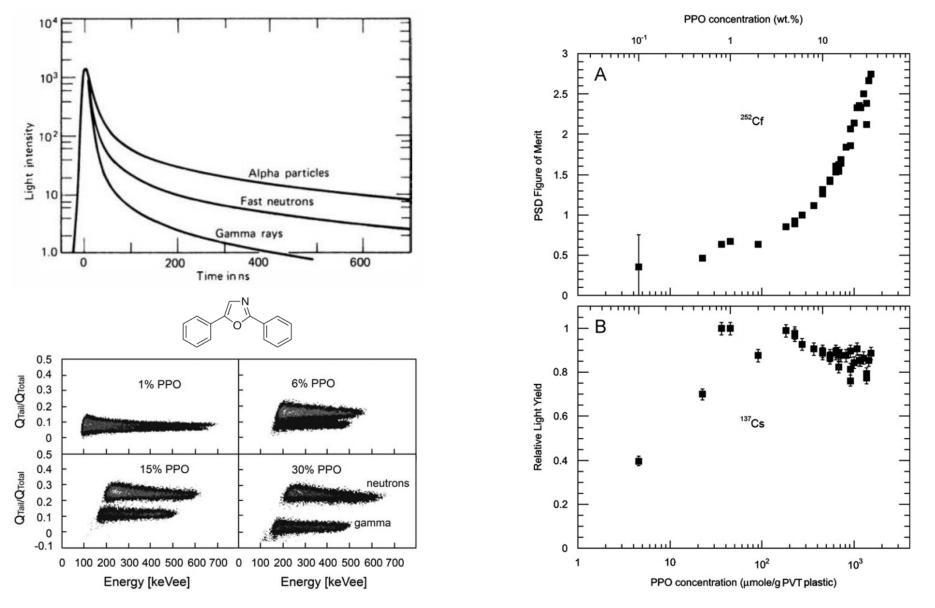
Elements with a high cross section for thermal neutron capture


Interaction	Energy T_n	Cross section (b)	Q-value (MeV)	Products
1 H(n, n')	100 keV – 10 MeV	0.7–28	-	proton
3 He(n, p)	Thermal	5330	0.764	proton, triton
10 B(n, α)	Thermal	3840	2.792	alpha, lithium ion
6 Li(n, α)	Thermal	940	4.78	alpha, triton
157 Gd(n, γ)	Thermal	254000	7.937	photons, electrons
155 Gd (n, γ)	Thermal	60900	8.536	photons, electrons
¹¹³ Cd(n, γ)	Thermal	20600	9.04	photons, electrons

Compounds with boron for thermal neutron capture

- natural boron content in compound 7-75 atomic %;
- colorless substances, do not decrease fluorescence in scintillator;
- hight solubility in monomer (5-15 wt. %);
- maximal boron content in scintillator up to 5%;
- chemical stability and temperature tolerance in polymerization process at 80-180 °C;
- 12-30% of light output reduction compared to unloaded scintillator.

Compounds with gadolinium for thermal neutron capture



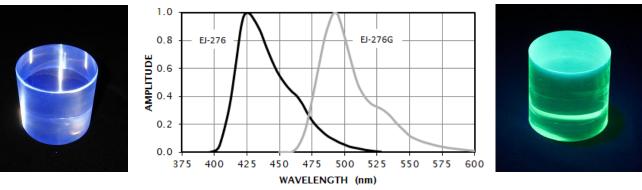
- natural gadolinium content in compound 12-47 atomic %;
- colorless complexes, decrease fluorescence in scintillator;
- hight solubility in monomer (6-28 wt. %);
- maximal gadolinium content in scintillator up to 4%;
- chemical stability and temperature tolerance in polymerization process at 80-180 °C;
- 18-60% of light output reduction compared to unloaded scintillator.

Compounds with gadolinium for thermal neutron capture

	Matrix	Dopant	wt% Gd	Dimensions	Light yield
Glodo et al. [69]	GdI ₃ :Ce ³⁺	-	29 (Matrix)	$10 \times 20 \times 1 \text{ mm}$	58000 ph/MeV
Czirr [71]	PVT	Gd(Hba) ₃ (homogeneous)	0.1–0.5	2.54 (ø) × 15.24 cm	15%–42% of unloaded NE120 (0.1–0.2 wt% Gd)
Brudanin et al. [72]	PMMA	Gd(NO ₃) ₃ (homogeneous)	3	30 (ø) × 10 mm	51% of unloaded plastic scintillator
Nemchenok et al. [73]	PMMA	GdCl ₃ (homogeneous)	4	27 (ø) × 10 mm	67.6% of unloaded plastic scintillator
Velmozhnaya et al. [74]	PS	Gd(PhV) ₃ (homogeneous)	4	-	60% of unloaded plastic scintillator
Watanabe et al. [75]	Bisphenol A resin	Unknown dopant	0.1	$20 \times 200 \times 3 \text{ mm}$	56.5% of unloaded plastic scintillator~ 700 ph/MeV
Bell et al. [76]	PVT	$Gd(NO_3)_3(TBP)_3$	1.5	2.5 (ø) × 1 cm	60% of unloaded plastic scintillator (1 wt% Gd)
Ovechnika et al. [77]	PS	$Gd[OCH(CH_3)_2]_3$ (homogeneous)	2.5	14 (ø) × 6 mm	76% of unloaded plastic scintillator
Bertrand et al. [78]	PS	Gd(TMHD) ₃ (homogeneous)	2	16 (ø) × 8 mm	50% of unloaded plastic scintillator~ 5000 ph/MeV

Plastic scintillators with pulse shape discrimination (PSD)

N. Zaitseva et al., Nuclear Instruments and Methods in Physics Research A 668 (2012) 88


Plastic scintillators with pulse shape discrimination (PSD)

Ref.	Strategy	Biggest size (∅, h)	FOM (at a given energy) (keVee)	Scintillation yield (ph/MeV)	Decay time (ns)	Emission wavelength (nm)
[40] b	Organometallics	25 mm imes 15 mm	1.4 (400)	7,300	800	515
[41] b	Organometallics	$16 \text{ mm} \times 10 \text{ mm}$	1.37 (250)	n.d.	370,000	590–620
[43]	1st fluo highly concentrated	$25 \text{ mm} \times 25 \text{ mm}$	n.d.	n.d.	n.d.	\approx 420 (assumption)
[44] e	1st fluo highly concentrated	$103 \text{ mm} \times 114 \text{ mm}$	1.25 (30 × 5 mm, 200)	3,400-4,500	13	420
[45] b	1st fluo highly concentrated	50 mm × 50 mm	3.31 (25 × 25 mm, 480)	n.d.	n.d.	≈ 430
[48, 49] g	EJ-299-33	127 mm × 150 mm	,	8,600	≈ 5	420
[46]	1st fluo highly concentrated	$25 \text{ mm} \times 15 \text{ mm}$	1.05 (25 × 15 mm, 300)	\approx 9,000 (relative)	n.d.	\approx 420 (assumption)
[47] c	1st fluo highly concentrated	390 cm ³	2.25 (50 × 50 mm,	≈ 13,000	< 10	≈ 440
			1000)			
[51]	Stilbene single	$200 \text{ mm} \times 20 \text{ mm}$	1.00 (500)	n.d.	4.5	410
с	crystals in silicone				(assumption)	(assumption)
[52] b	<i>p</i> -T or stilbene single crystals in Sylgard	50 mm × 50 mm	1.41 (<i>p</i> -T, 600) 1.19 (stilbene, 600)	≈ 9,900 (<i>p</i> -T) ≈ 5,700 (stilbene)	n.d.	420 (<i>p</i> -T); 395 (stilbene)
[55]	Ionic liquids	Micrometers	n.d.	n.d.	< 50 (assumption)	\approx 380 (assumption)

Commercial plastic scintillators with boron and PSD

Company, PS name	Light Output [% anthracene]	Wavelength of Max. Emission [nm]	Decay Time [ns]	Density [g/cm³]	Refractive Index	Polymer Base and Softening Point [°C]
Eljen Technology EJ-276	56	425	13	1.096	1.60	-
Eljen Technology EJ-276G	52	490	13	1.096	1.57	-
Eljen Technology EJ-254 (5% B)	48	425	1.5	1.026	1.58	РVТ 75
Eljen Technology EJ-254 (2.5% B)	56	425	1.5	1.023	1.58	РVТ 75
Eljen Technology EJ-254 (1% B)	60	425	1.5	1.021	1.58	РVТ 75
Saint-Gobain BC-454 (5% B)	48	425	2.2	1.026	1.58	PVT 60

EJ-276 & EJ-276G EMISSION SPECTRUM

Polymers with fluorine for fast neutron detection

Polymer	Cytop S type	Teflon AF 1600	Hyflon AD 40	Polypentafluorostyren	ne Polystyrene
Molecular formula	$ \begin{array}{c} $	$ \begin{array}{c c} F & F \\ \hline O & O \\ F_3 C & CF_3 \end{array} \begin{array}{c} F & F \\ F & F \\ F & F \end{array} $	F_3C_0 F_F H_n F_F O_0 F_F F_F	* F F F F	↓ ↓ ↓
Density [g/cm ³]	2.03	1.78	1.98	1.55	1.06
Glass transition temperature [°C]	108	160	90	107	100
Refractive index	1.34	1.31	1.33	1.48	1.59
Price [EUR/g]	43	98	160	2.5	0.02
neutron inter that undergo	tivation detecti raction with ¹⁹ F β ⁻ and gamma s of 7.1 s and 2	N or ¹⁹ O	Diameter (mm) Thickness (mm) Weight (g) Density (g/cm ³) λ_{max}^{em} (nm) $\lambda_{max}^{radiolum}$ (nm) Fluorine content (atoms/cm ³) Hydrogen content (atoms/cm ³) Hydrogen content (atoms/cm ³) <i>F/H</i> ratio Number of photoelectrons (N _{phe} /MeV) Light output (ph/MeV) Light output ratio ²⁴¹ Am/ ¹³⁷ Cs (%) Decay time (ns)	$\begin{array}{c} 32.9\\ 3.6\\ 4.741\\ 1.55\\ 416\\ 425\\ 3.73\times10^{22}\\ 2.24\times10^{22}\\ 1.66\\ 870\pm50\\ \end{array}$ $\begin{array}{c} 3100\pm300\\ 76\pm3\\ 3.0\pm0.3\\ \end{array}$	

Summary

- Plastic scintillators based on PS and PVT possess the best properties and are commercially avialible at low price: 200-1000 USD/kg.
- Scintillators can be tuned by changing fluorescent substances: influence on light output, decay time and emission spectra.
- Modification of plastic scintillators by adding boron or gadolinium compounds or overdoping fluorescent additions can increase neutron detection capabilities.
- Possible ways of improving scintillators properties:
 - design of a new fluorescent additions: organic chemistry;
 - adapting chemical compounds from other fields like

LED and OLED devices;

- research on different polymers.

그는 방법에 가장에 가지 않는 것이 같아요.