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ABSTRACT: Quantitative accuracy in Positron Emission Tomography (PET) depends on reliable attenuation correction (AC) methods [1] , and novel imaging concepts such as positronium

lifetime imaging with the Jagiellonian PET (J-PET) system have further highlighted the importance of developing advanced PET methodologies [2]. The clinical standard for AC in PET imaging

remains computed tomography (CT).

However, this approach increases patient radiation dose and imaging expenses. In recent years, several CT-less attenuation correction

methodologies have been proposed to eliminate the need for CT scans [3]. In this work, we present a feasibility study for a CT-less AC approach that utilizes photons undergoing Compton
scattering within the PET detector—data typically discarded in conventional analyses. This method is especially well-suited to the J-PET scanner [4], which is built from long plastic
scintillators that inherently produce a significant number of detectable scattered photons [5].
We performed simulations using the GEANT4 Application for Tomographic Emission (GATE) [6] by modeling a modular J-PET scanner with phantoms having varying attenuation profiles.
We then analyzed the Lines of Response (LORs) formed between the first interaction at the detector and the subsequent detection of the scattered photon after it passes through the
phantom and reaches the detector on the opposite side. Our initial findings show that these LORs contain spatial information about the phantom's attenuation distribution, enabling the
distinction between varying attenuation density regions. These results demonstrate that detector-scattered photons can serve as an intrinsic data source for generating attenuation maps.

The JPET Advantage: A novel PET system, based on Plastic Scintillators.

GATE Simulation Setup: Vversion 9.1
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Key Features:

Key Features: ?
1. Physics List: emlivermore polar.
1. Use of Plastic Scintillators 2. Source: Ge-68 emitting 511 keV back-to-back gammas isotropically with 135 MBq activity.
2. Excellent Time Resolution 3. Cylindrical GATE Phantom: 25 cm radius, 50 cm height, water (alternatively air) material,
3. Non-Magnetic and Light-weight centered at (0,0,0) cm, attached to PhantomSD.
4. Multi-photon Detection [7] 4. PET scanner hierarchy: World - cylindricalPET > 24 x modules (arranged in a ring) > 13 x
5. Positronium Imaging [8] i S S ™ crystals (stacked in Y) > 200 x Scintillators made of EJ230 (stacked in Z).
6. Fundamental Symmetry Studies [9] Approx 17.13% of the detected hits are scattered from the detector 5. Digitizer: CTW =600 ps & Energy Resolution =23.1 % @ 200 keV
Event Selection: Taking care of Space & Time Complexity + More relevant with respect to the experimental data.

“Detector-Scattered (DS) coincidences form a subset of # Steps to get DS-LORSs Efficiently Scatter Test Plots

the normal coincidences” Normal Goincidences DS-Goincidences
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Thus, a coincidence time window (CTW) of 3ns is 4. Apply Scatter Test: ST <= 100 mm.

sufficient to include all DS-coincidences.

#{i | comptonCrystall, = 1, comptonCrystal2;, = 1, comptonCrystal3, = 2}

However, to allow for experimental tolerances, a wider ST = \/(1131 —29)2 + (y1 —y2)2 + (21 — 29)2 — [t1 — ta] - C

CTW of 5 ns should be chosen.

Purity =

Total number of entries

57.04 % for Water Phantom & 65.14 % for Air Phantom
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Noise Propagation Analysis:

* DS Event Fraction =40 %

 Total DS Events (in 10 mins) = 40,000,000

* Counts per bin (120,000) =333

* Projection Noise (o, % 1/V/#) = 0.055cm™

* Reconstructed Noise (o, ® Gp/JN) =0.0032cm
* SNRfor Water (SNR % Py, / 0,) = 30

Data Analysis & Preliminary Results: DS-LORs are getting affected by the Attenuation Values of the phantom.
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Conclusion: The above B-distribution plots show that the Detector Scattered LORs are

0. — arctan(25) 180 , influenced by attenuation from the phantom. This indicates that such information can be
c 40 T In case of Crystals, SNR for water is 3.4 . : :
____________________________________________________ ! valuable for reconstructing the attenuation map using detector-scattered photons.
Challenges: Next Step: <UNDER CONSTRUCTION...> | Future Goal: &
1. Low Statistics: This limitation could be addressed by employing a[The next step is to develop an iterative approach that|1. Validate this approach with real J-PET Experimental Data.
LT HOC I o | integrates information from the Normal Coincidence Events|2. Integrate the validated approach into a deep learning
2. High Noise .& Acmdgntal Coincidences: These effects are evident with detector-scattered photon data, with the goal of architecture.
from the purity analyss. vely refini d derivi liabl ion|3. Deploy the final form for clinical it would b
3. Standard Reconstruction Algorithms: Conventional methods such progressively retining an eriving a retiable attenuation . ep.oy e |na. | orm OI’. C |.n|ca . use. wou e
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