

Determination of annihilation vertex of antihydrogen using modular J-PET detector

Piyush Pandey^{1,2}, Sushil Sharma^{1,2}, Pawel Moskal^{1,2}, on behalf of the $AE\bar{g}IS$ collaboration and, A. K. Venadan^{1,2}, G. Korcyl^{1,2}, K. Kacprzak^{1,2}

¹Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland ²Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Kraków, Poland

Motivation

WEP as

of GTR

material)

Antiproton Antihydrogen

$AE\overline{g}IS$ Beamline

Mathematics behind the Experiment

- Δy gives the vertical displacement where ais acceleration and τ is the transit time between the gratings.
- Recently, AE \bar{g} IS collaboration demonstrated the potentialities for real-time annihilation vertexing with submicrometric resolution [ref]

- - grids, compensate drifts. Tracks: Star-shaped prongs (pions, protons, nuclear

J-PET detection modules.

The annihilation vertices will be reconstructed using

Calibration: CMOS alternates \overline{H} shots and light to align

fragments) give sub- μm vertexing.

Moiré Deflectometer and the Idea of Vertex Reconstruction

Geant4 Simulations for developing the algorithm of vertex reconstruction

Single scintillator

Orthographic view

Results from the Simulated Studies

50000

Research University at Jagiellonian University.

Energy deposition Single scintillator PionEnergyDep (Normalized) for Single Scintillator —2.25 MeV

 Original Width = 1.81 MeV/cm • Double Width = 1.85 MeV/cm Pions are MIPs • Half Width = 1.8 MeV/cm

input hits

4. S. Aghion et al., Nature Communications 5, 4538 (2014)

5. L. Glöggler et al., Phys. Rev. Lett. **132**, 083402 (2024)

6. M. Berghold et al., Science Advances 11, 14 (2025)

Four modules setup PionEnergyDep (Normalized) for Four Modules

For muons (also MIPs), Energy Deposition in organic scintillators is 2 MeV/cm.

Angular deviation Angular Deviation in Test Scintillator; Angle (degrees); Counts

Less angular deviation means the particle's path is straighter, which is most important for vertex reconstruction

Vertex Reconstruction and Future Plans

Testing the J-PET modules, to be installed at AEgIS facility at CERN

References

- 1. M. Doser et al., Class. Quantum Grav. 29, 184009 (2012) 7. P. Moskal et al., Science Advances 10, eadp2840 (2024) 2. Savely G Karshenboim, J. Phys. B: At. Mol. Opt. Phys. 49, 144001 (2016) 8. P. Moskal et al., Nature Communications 15, 78 (2024)
- 9. S. Sharma et al., Nucl. Instrum. Meth. A 1062, 169192 (2024) 3. C. Amsler et al., Communications Physics 4, 19 (2021)
 - 10. R. C. Ferguson et al., <u>J. Phys. Conf. Ser. 3029</u>, 012005 (2025)
 - 11. P. Conte et al., arXiv:2506.09274v1 (2025)
 - - 12. O. Benevides Rodrigues et al., arXiv:2505.0569 (2025)

We also acknowledge Polish high-performance computing infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2024/017688.

Acknowledgement

We acknowledge support from the National Science Centre of Poland through grants MAE- STRO no. 2021/42/A/ST2/00423, OPUS no.

2021/43/B/ST2/02150, OPUS24+LAP no. 2022/47/I/NZ7/03112 and, SONATA Bis no. 2023/50/E/ST2/00574, the Ministry of Science and Higher

Education through grant no. IAL/SP/596235/2023, the SciMat and qLife Priority Research Areas budget under the program Excellence Initiative -