Endorsing Titanium-Scandium Radionuclide Generator for PET and Positronium Imaging

Aleksander Khreptak, Paweł Moskal, Ewa Stępień

M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland Center for Theranostics, Jagiellonian University, Krakow, Poland

The development of positronium imaging is tightly linked to the availability of suitable radionuclides and robust radiochemistry platforms. Among the emerging candidates, 44 Sc has attracted significant interest due to its favourable physical properties, including a half-life of 44 Sc hours, a pure β^+ emission profile, and the additional prompt γ -emission that enables advanced triple-photon detection schemes. These characteristics make 44 Sc particularly promising for high-resolution imaging and novel quantitative methodologies.

However, routine clinical and preclinical implementation requires a practical, sustainable, and cost-efficient production route. Conventional supply based on cyclotron irradiation or ⁶⁸Ge/⁶⁸Ga generators is often limited by infrastructure, distribution logistics, and short half-lives. In this context, we propose a titanium-scandium radionuclide generator as a new solution. The concept is based on the production and long-term retention of a parent titanium isotope within a solid matrix, from which ⁴⁴Sc can be selectively eluted in a chemically pure form when needed.

Such a generator system could ensure an on-demand and decentralized source of ⁴⁴Sc, significantly simplifying the supply chain. Moreover, the titanium-scandium platform offers prospects for scalability, cost reduction, and compatibility with existing radiolabelling protocols. By providing reliable access to ⁴⁴Sc, this approach has the potential to accelerate the adoption of positronium imaging and extend its clinical impact.

Why Scandium?

Half-life

~ 4 hours

2.6 ps

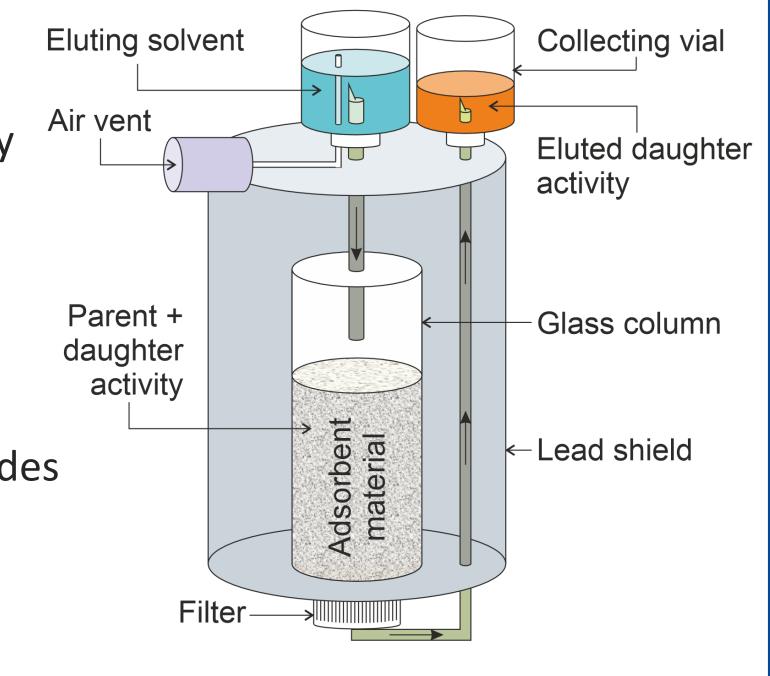
stable

decay (e⁺)

1157 keV

99.9%

94.3%

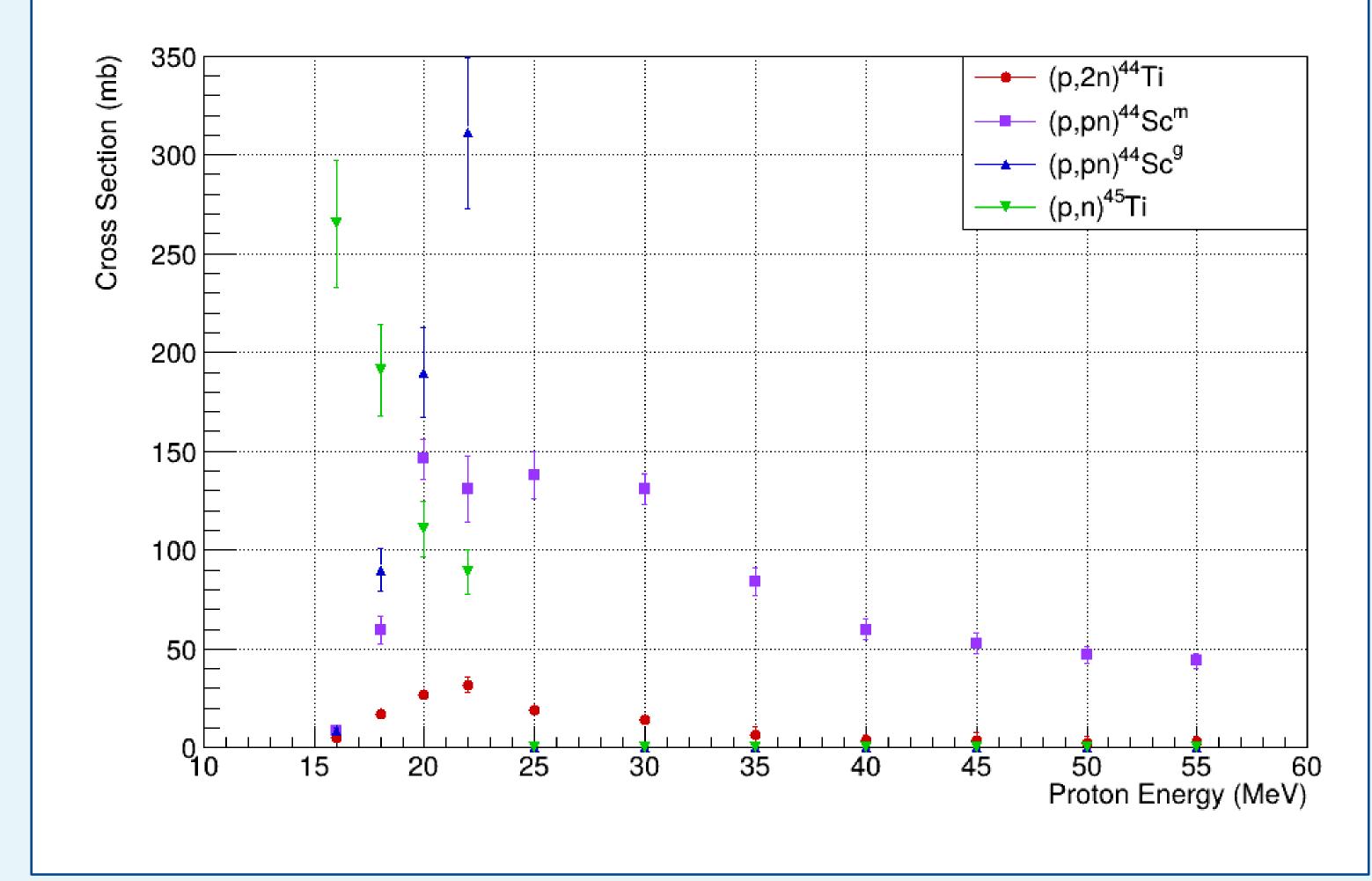

- Ideal timescale for synthesis and imaging (T_{1/2} ≈ 4 h)
- Pure β⁺ emission (94.3%) for PET and positronium studies
- Prompt γ (1157 keV, 99.9%) →
 precise timestamp and localisation
 of positronium formation
- Sc³+ chemistry similar to lanthanides
 → highly stable complexes with
 DOTA-type chelators

These features make ⁴⁴Sc a uniquely powerful radionuclide for advanced PET and positronium imaging

• Parent isotope (Ti) fixed on adsorbent in a shielded glass column

- 44**Sc daughter** produced *in situ* by decay
- Selective elution with solvent releases pure ⁴⁴Sc into collecting vial
- Provides on-demand supply of ⁴⁴Sc without need for local cyclotron
- Long-lived parent (44 Ti, $T_{1/2} \approx 60$ years) \rightarrow a single generator operates for decades

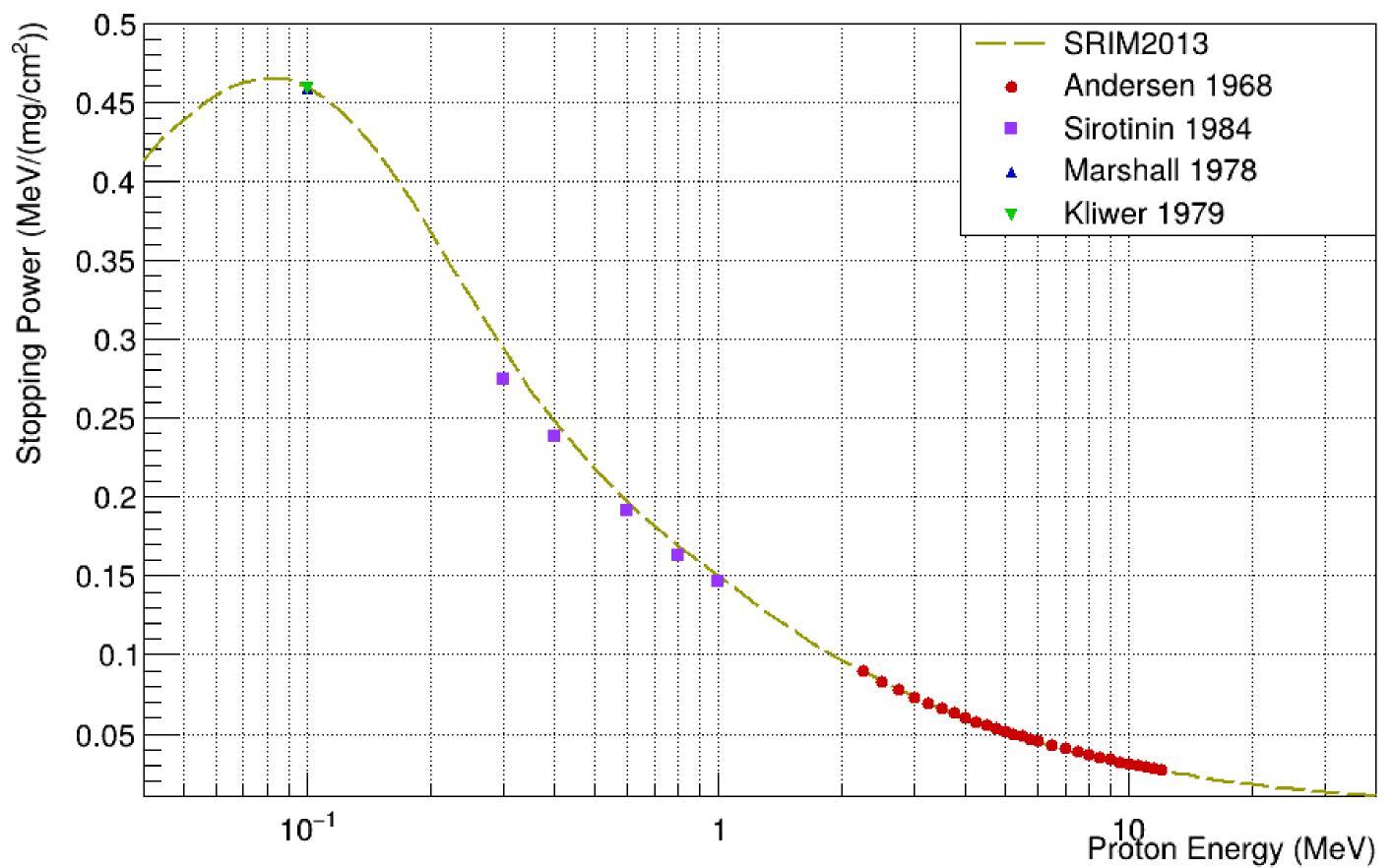
This simple, reusable system enables a sustainable and decentralised source of ⁴⁴Sc for PET and positronium imaging


Production of ⁴⁴Ti

- The 45 Sc(p,2n) 44 Ti reaction provides the highest cross section σ (~40 mb) in an energy window (20-25 MeV) and is considered the most efficient route.
- 45 Sc(d,3n) 44 Ti requires higher energies (40-50 MeV) and gives lower σ (~20 mb).
- 44 Ca(α ,4n) 44 Ti needs enriched targets and α beams >40 MeV, with σ below 20 mb (modelled).

	⁴⁵ Sc(p,2n) ⁴⁴ Ti	⁴⁵ Sc(d,3n) ⁴⁴ Ti	⁴⁴ Ca(a,4n) ⁴⁴ Ti
Threshold	12.7 MeV	21 MeV	> 30 MeV
σ_{max}	40 mb	21 mb	≤ 20 mb
Optimal energy range	20-25 MeV	40-50 MeV	45-55 MeV

⁴⁵Sc(p,x) excitation functions


Excitation functions for 45 Sc(p,x) show that the 45 Sc(p,2n) 44 Ti channel peaks at $^{20-25}$ MeV, providing the most efficient production window, while competing (p,pn) and (p,n) channels generate contaminant scandium and titanium isotopes.

Stopping Power

44Ti/44Sc Generator

Stopping power of protons in scandium determines their energy loss inside the target and thus defines the optimal scandium target thickness for efficient ⁴⁴Ti production.

Target thickness can be estimated from SRIM stopping powers by integrating energy loss of protons in scandium. The calculation links the required ΔE to an equivalent material depth ($\rho_{Sc}=2.99~{\rm g/cm^2}$).

	ΔE (MeV)	t (mm)
$t_{mm} = \frac{10}{\rho} \int_{E_{out}}^{E_{in}} \frac{dE}{S_e(E)} \approx \frac{10}{\rho} \sum_{i} \frac{\Delta E_i}{S_e(E_i)}$	2	~0.37
	5	~0.84
	7	~1.17
	10	~1.67

Conclusions

The ⁴⁵Sc(p,2n)⁴⁴Ti reaction at **20-25 MeV** provides the most efficient ⁴⁴Ti production route. SRIM-based stopping power analysis defines optimal Sc target thickness of **~0.4-1.7 mm**. These results support practical design of ⁴⁴Ti/⁴⁴Sc generators for PET.

Acknowledgements The authors acknowledge the support provided by the National Science Center of Poland (NCN) through grants no. 2021/42/A/ST2/00423, 2021/43/B/ST2/02150, 2022/47/I/NZ7/03112; the Ministry of Education and Science through the SciMat and qLIFE Priority Research Areas budget No. U1U/P05/NO/03.27.