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Outlook

• Decay is non-exponential ar short and long times 

• However, diffcoult to measure. Limited evidence so far.

• We report on results of fluorescence decay with two 

distinct photon detectors 

• Spectral function(s) diverging at threshold.

• Two different power laws. Is that a quantum effect?



Crash-course on the decay law
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For:

1. The spectral function falls faster than 1/E^2:  P’(0) = 0 

(that leads to Zeno and later on ant-Zeno effect).

2. The threshold energy Eth is finite, 

Hence late-time power law

Survival prob.  amplitude A(t) is the Fourier transform of the spectra function



Late-time decay
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Cold Na atoms in a optical potential

Experimental confirmation of 

non-exponential decay: short times
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Experimental confirmation of 

non-exponential decay: long times

                                   

Confirmation of: L. A. Khalfin. 1957. 1957 (Engl. trans. Zh.Eksp.Teor.Fiz.,33,1371)
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In most cases: 𝛽<3     
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Limited direct evidence so far.

Additonal indirect evidences: 

A. Crespi et al, . Experimental investigation of quantum decay at short, 

intermediate, and long times via integrated photonics. Phys. Rev. Lett., 

122:130401, 2019.

N. G. Kelkar, M. Nowakowski, and K. P. Khemchandani. Hidden evidence of

nonexponential nuclear decay. Phys. Rev. C, 70:024601, 2004.

F. Giacosa and G. Pagliara, Deviation from the exponential decay law in 

relativistic quantum field theory: the example of strongly decaying particles,

Mod. Phys. Lett. A 26 (2011), 2247-2259

Plenty of exp. evidence that hadrons are not Breit-Wigner, e.g.

S. Schael et al. Branching ratios and spectral functions of tau decays: Final 

ALEPH measurements and physics implications. Phys. Rept., 421:191–284, 2005.
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Why is the non-exponential decay law  

so hard to see?

The example of the 2P-12 transition.

See also

P. Facchi and S. Pascazio. 

Temporal behavior and quantum zeno time of an 

excited state of the hydrogen atom.

Phys. Lett. A, 241:139–144, 1998.

https://arxiv.org/abs/2408.06905
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Short-time (Zeno) regime

2408.06905 [quant-ph]

https://arxiv.org/abs/2408.06905
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Late-time regime for 2P-1S

2408.06905 [quant-ph]

Turnover time after more than 100 lifetimes! Not detectable. 

𝛽=5

https://arxiv.org/abs/2408.06905
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• Here: recent experiment on fluorescence

• Different compounds tested: acridine 

orange, rhodamine B, erythrosine B

• acridine orange, rhodamine B: 1 exp or 2 

exp work well. 

• erythrosine B: power law favored!
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2509.17163 [quant-ph]

https://arxiv.org/abs/2509.17163
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Set-up. (From K. Kyzioł, master thesis, UJK, 2025). 



Results for eytrhosine B
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2509.17163 [quant-ph]



Fitting functions and chi^2

2509.17163 
[quant-ph]



Important remarks 
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Channel 1:  spectral function for reproducing data
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This is the required 

Shape of the spectral function 

for our result 

(and for most of Rothe)

Notice the oscillations! 

Not visible at present

(coarse graining, binning)

But  their existence is

Inherent to the approach

2509.17163 [quant-ph]



Different power coefficients: is that  QM?
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F.G. Multichannel decay law. Phys. Lett. B, 831:137200, 2022. 2108.07838 [quant-ph]
F. G. Non-exponential decay in quantum field theory and in quantum mechanics: the 
case of two (or more) decay channels. Found. Phys., 42:1262–1299, 2012.

Consider two decay channel

At late times (at the onset of the power law):

Different chanel dependent late-time behavior! 

2509.17163 [quant-ph]

https://arxiv.org/abs/2108.07838


For the two intensities for e.g. 
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Extension to bands: different band behavior when the power-law 

starts to dominante:  

2509.17163 [quant-ph]



Discussion/Conclusions

• Power-law describes the fluorescence decay of erythrosine 

B. Confirmation of Rothe et al (2006). 

• Just as (majority of) Rothe’s compounds, we obtain  𝛽<3. 
That means, the spectral function diverges at threshold! 

• We used two different photon detectors. Two different 

coefficients 𝛽 were measured. That is consistent with QM. 

• Late-time power-law: memory effect. 

This memory effect is channel (or band) dependent. 
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Thank  you
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• Back-up below
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Basic definitions
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Deviations from the exp. law at short times

Taylor expansion of the amplitude:

Note: the quadratic behavior holds 

for any quantum transition, not only for decays. 
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Time evolution and energy distribution (1)

S

S

 The unstable state S  is not an eigenstate of the Hamiltonian H.

Let d (E) be the energy distribution of the unstable state S .  

Normalization holds:  d (E)dE 1
+
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Payley and Wiener (1934) theorem: P(t) is not exponential at large time if 

a left-threshold is present
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The Breit-Wigner energy distribution cannot be exact. 

Two physical conditions for a realistic              are:

1) Minimal energy:

2) Mean energy finite:
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Time evolution and energy distribution (2)

Breit-Wigner distribution:
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How to introudce a threshold? 

BW with threshold (naive threatment)

N is needed because the normalization is lost!



First example: BW with threshold (naive treatment)

N is needed because the normalization is lost!

<E>=ln=



Time evolution

Blue: plain BW, yellow: BW with threshold (naive) <E>=ln=



Single left-threshold at long times
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F.G. and G. Pagliara, [arXiv:1204.1896 [nucl-th]]. 
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Second example: threshold plus form factor
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Comments

• The ‘brute force’ threshold and high-energy behavior 

can be good as a first approximation, but it is just an ‘ad 

hoc’ modification of Breit-Wigner.

• How to properly describe the theory of decay? 

• Which is a suitable energy distribution for e.m. decays? 



General non-relativistic approach

Propagator

Self-energy (or loop)

Eth is the threshold energy

Energy dependent  ‘decay width’

Energy distribution (or spectral function)



Link between propagator and distribution

out of which

The propagator can be expressed as (H being the full Hamiltonian)

Normalization ok!!

[arXiv:2001.07781 [hep-ph]] 



Time-evolution (general)

The dots describe short- and long-time deviations from the exponential decay 

The pole:



Breit-Wigner distribution

Rho-meson as example. 

BW extends from –inf to +inf. There is no left threshold.



BW: properties

BW-propagator: 

Link prop-dist: 

Normalization:

(important for prob. interpretation) 

Pole:

BW-distribution: 



BW corresponds to exp. decay



BW with threshold properly done

This is actually the correct Breit-Wigner with threshold!

Correctly normalized to unity, no need of an extra N…but somewhat not handy

We assume that:
<E>=ln=



Model for e.m. decays: Sill plus form factor
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See also:



Spectral function
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<E> finite and threshold present

M= 2, Eth =0.3 ,  = 1.5



Survival probability

Francesco Giacosa

M= 2, Eth =0.3 ,  = 1.5



Log-plot
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M= 2, Eth =0.3 ,  = 1.5



Log-log plot
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M= 2, Eth =0.3 ,  = 1.5



Hydrogen atm, 2P-1S transition
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 = 1.9 ns 

M = 10.21 eV

 = 3me/2

Eth = 0 



Decay law
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Short-time decay
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sec

P(t)

Long times: “fighting” with numerics



Multichannel decay law 

w1(t) is the probability that the 

decay has occurred in the first 

channel between (0,t)



Thanks!



BW with threshold properly done

Comparision with ‘naive’ BW with threshold



Relativistic Sill

Let us consider a resonance with mass M decaying into twoparticles:

We assume that: 

Decay width as function of the energy:

Note, it saturates for large s



Relativsitic Sill



Relativistic Sill

Sill for the 

rho-meson



Comments



Beyond Breit-Wigner

ArXiv: 2106.03749



Rho meson

Aleph data

for tau decay



More than a single channel



Two-channel case



a0(980) example



Other recent Sill application
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Cold Na atoms in a optical potential

Experimental confirmation of 

non-exponential decay (1)
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Normalization and its heuristic justification

One can show that under quite general conditions

Brief QM recall Eigenstates of Hamilton H
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