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Radiation damage In silicon sensors
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Radiation-induced changes in properties and structures of the
silicon tracking detectors are observed as macroscopic effects

caused by microscopic defects:
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Silicon Tracking Detectors

Silicon tracking detectors are used in almost all HEP experiments:
Different sensor technologies, designs, operating conditions,....

ALICE ITS Barrel

New ITS for Run3:2022)

ALICE ITS Outer Barrel

(Insertion Test 2021)
SIMDET-Moll-2021
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Silicon Tracking Detectors

Silicon tracking detectors are used in almost all HEP experiments:
Different sensor technologies, designs, operating conditions,....

ALICE ITS Barrel

New ITS for Run3:2022)

ALICE ITS Outer Barrel

(Insertion Test 2021)
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LHCDb spectrometer v

Magnet &
Magnet Stations TORCH

Tracker |

PicoCal

Mighty . RICH2

LHCb is a single armed forward
spectrometer, located at LHC
Complementary kinematical
coverage compared to CMS and
ATLAS.

Sl

Physics program:
CP Violation,
Rare B decays,
B decays to charmonium and
open charm,
Charmless B decays,
Semileptonic B decays,
Charm physics,
B hadron and quarkonia,
QCD, electroweak, exotica ...
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Interaction Point

Muon

and Primary
focus
Vertex Locator 8

Excellent performance:

3 fb'! accumulated in Run 1

5.6 fblin Run 2

Excellent Vertex Resolution

Precise tracking: 6p/p~0.4 — 0.6%
Hadronic identification 2-100 GeV/c .
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LHCb Experiment at
((« Run / Event: 328857 / 61323021780
Data recorded: 2025-09-01 04:50:21 GMT

MUON
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RN R CMS Experiment at the LHC, CERN  §
Data recordec: 2012-May-27 233547 2730 C AGH UNIVERSITY OF KRAKOW
: RunEvent: 195009 | 137440354

ATLAS

EXPERIMENT

ATLAS Simulation
Ys=14 TeV, HL-LHC
tE, (p)=200

https://cms.cern/book/export/html/1187

https://atlas.cern/Updates/News/ATLAS-Prepares-HLLHC
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VErtex Locator (VELO) - Run 3-4 e

The Vertex Locator (VELO) is a silicon pixel tracking
detector in the heart of the LHCb spectrometer.

Geometry
* Pixel size: 55 x 55 ym? — much finer granularity having .L o {

higher resolution. 390 mrad 70 mrad
Detector Geometry & Modules \ H [ HHW [66

« The detector is composed of 52 modules divided into HH \ HIHH
two detector halves.

« operating at just a 5 mm radius from the LHC beams. S
« The new readout ASIC for the VELO, is capable of L

operating at the 40 MHz collision rate and can cope X

with up to 900 million hits/s/ASIC. 6cm

(stable beams)
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Leakage Current (Run 1-2) M
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Current VS Voltage scans: Taken
Weekly
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Leakage Current w.r.t. Sensor position (Run 1-2)

R sensors
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Effective Depletion Voltage (Run 1-2)

Radiation damage can create defects that act like dopants themselves, effectively altering the
net doping concentration.

Effective Depletion Voltage [V ]
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This can change the type of semiconductor (n-type to p-type, called type inversion).
It alters how much voltage is needed to deplete the active region of the detector fully.
As a consequence, a much higher bias voltage is required to reach full depletion.
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How to predict the damage?

AGH

We should have:
» very detailed description of the detector and the experimental cavern,
« physics model for the generation of proton-proton collisions.

6 GEANT4

A SIMULATION TOOLKIT
bl

S
3 g )

N

TS i o”

\| »

https://geant4.web.cern.ch/ https://fluka.cern/
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FLUKA simulaton of LHCDb detector AGH

« Monte-Carlo-based particle transport code.

« Version developed and maintained by CERN Written primarily in Fortran.

« Combinatorial Geometry (i.e., CSG).

« Very reliable radiation simulation, especially low-energy neutrons (down to 1074 GeV)

« Geometry description of the LHCb detector in Fluka — before Run 1-2, updated for Run 3-4.

« Plans for the Upgrade 2 (Run 5-6) - time-consuming (gdml to fluka ?).
| Iﬂ I' :

A.Mucha 14th Trento Workshop on Advanced Silicon Radiator Detectors 25-27 of February 2019
9/24/2025 "2nd Symposium on New Trends in Nuclear and Medical Physics" 15
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Simulation of particle radiation in LHCb AGH

* |n the LHC environment, the main
source of particle radiation:

- prompt production of particles
(pions, protons, neutrons, kaons,
electrons, muons, and photons),

- production of secondary particles in
interactions with the detectors and
the decay of radionuclides.

x fem)

-:---- Sin (Konobeyev)
10 ——— Sip (Summers)
...... Si p (Huhtinen)
... == 8i pi (Huhtinen)
—— Sie (Summers)

,5: 1 1 1 | )
10%10710°%10°10%10%102%210" 1 10 10° 10° 10°
E,, [MeV]

Damage weight relative to 1 MeV neutrons
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Simulation of particle radiation in LHCb

In the LHC environment, the main
source of particle radiation:

- prompt production of particles
(pions, protons, neutrons, kaons,
electrons, muons, and photons),

- production of secondary particles in
interactions with the detectors and
the decay of radionuclides.
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x102

Sensor z =
— 0.5cm
9.5 ecm
— 43.5¢cm
— 75.0cm

Radius [cm]

IEEE Trans. Nucl. Sci. 65 (2018) 1127-1132

¢, [part cm™]

1]

» The leakage current is measured across the entire sensor.
» The fluence exhibits a strong dependence on the radius.

» The sensor tips may be significantly damaged (reason for annealing at the end of Run 2).
* Dependence of fluence on the center of mass energy.

"2nd Symposium on New Trends in Nuclear and Medical Physics"

AGH
12
6520~ EN—
~ iy E
60 =, MC ]
55 E_ ..l .l. for 1fb_1 ]
505" N =5 =13 TeV
458 2T . “s=7Tev 3
= .

40 E_-';.' -.... Lol . "_E
35 ‘e, E
30F © el K
253— Re(0.8;1.1) cm 3
20 : I T R R
z [cm]

18


https://indico.cern.ch/event/777112/contributions/3312287/attachments/1801249/2938120/AOM_Trento.pdf
https://indico.cern.ch/event/777112/contributions/3312287/attachments/1801249/2938120/AOM_Trento.pdf
https://indico.cern.ch/event/777112/contributions/3312287/attachments/1801249/2938120/AOM_Trento.pdf
https://indico.cern.ch/event/777112/contributions/3312287/attachments/1801249/2938120/AOM_Trento.pdf

1l

Limitations in Fluence Measurement at LHCDb AGH
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We have dose monitoring, but fluence cannot be reliably

measured with the installed sensors — simulations fill that gap

_  good for integrated dose, not particle Dosimeters
Passive fluence.
dosimeters
Active e real-time dose, Active Dosimeters
. . real-time, immediate
sensors * limited neutron fluence only. | readings of radiation
exposure using electronic
components
Particle .
e cann m red directly.
fluence cannot be measu y
Passive Dosimeters ﬁ
FLUKA * used to estimate fluence instead of || Cumulative exposure et o,
simulations direct measurement. e Dl W/
total dose received .\«./

9/24/2025 "2nd Symposium on New Trends in Nuclear and Medical Physics" Mattias_Karacson_2018 19



https://indico.cern.ch/event/695271/contributions/2942617/attachments/1638519/2615248/Benchmarking_of_the_radiation_fields_MK.pdf

Limitations of the usage FLUKA for LHC Run 5

9/24/2025

Geometry limitations (man-power and time)

* Full detector and surrounding infrastructure geometry is missing, — impacts accuracy, especially for

backscattering studies.

 For the upcoming upgrade, no complete geometry description is currently available.

* A conversion tool from GDML to FLUKA input was recently developed, but it is not yet functional.

Embedded event generator issues
* Need to assess how different event generators influence simulation results.

* Plan: compare particle production in pp interactions across different generators.

- Focus on Pythia vs. Herwig differences in particle spectra and distributions. ZR#%

"2nd Symposium on New Trends in Nuclear and Medical Physics"
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Particles in Herwig and Pythia
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Comparison of generators with LHCb data LAGH_
Prompt charged particle dersity at /5 =7 TeV
2 L I+ AR « Discrepancies occur at low momentum
@ iz = e : and in the very forward region.
FuE H :
" sE } E « Both generators show a slight variation
w50 - e E in the absolute number of hadrons.
025 E— :|+ —E
rﬂ;:::{:::}:::}:::}:::}::: wammmsRESE
g B « When compared with LHCb data,
g Pythia is more in agreement with the
&EIJ_'EI I IIII.l-II I Il.'l.lli-I I IIII.|BI I I!I.ll.'lI I Il_l'1I I I!Il.d.I I II_|E|I I Ill.Sl I I"'III data
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Data-driven Particle flux analysis AGH
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Radial Hit density for Data and MC AGH
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Conclusion AGH
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The upgraded VELO detector faces significant challenges from radiation damage in its silicon sensors.
Macroscopic effects, such as leakage current, depletion voltage, will be affected as fluence increases.
To anticipate these effects, reliable radiation prediction methods are essential.

While simulations with tools like FLUKA are powerful, they suffer from limitations. This makes purely
simulation-based predictions uncertain.

Direct fluence measurements are not feasible, which highlights the importance of complementary, data-
driven approaches.

By extracting detailed flux information, including particle identification and energy spectra, we can move
beyond track reconstruction and apply hit-based methods to estimate radiation impact more accurately.

Ultimately, combining simulations with carefully designed data-driven strategies will be crucial for
understanding and predicting radiation damage in the upgraded VELO.

This integrated approach will help ensure stable long-term operation of the detector, safeguarding its
physics performance within the LHCb experiment.

"2nd Symposium on New Trends in Nuclear and Medical Physics" 25



Thank you...

Any Questions?
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Back-up
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Solid State Detectors — Why Silicon? — “fpsg A

- Some characteristics of Silicon crystals
- Small band gap E,=1.12 eV = E(e-h pair) = 3.6 eV (= 30 eV for gas detectors)
« High specific density 2.33 g/cm? ; dE/dx (M.I.P.) = 3.8 MeV/cm =~ 106 e-h/um (average)
- High carrier mobility p, =1450 cm?/Vs, u,, = 450 cm?/\VVs — fast charge collection (<10 ns)
« Very pure < 1ppm impurities and < 0.1ppb electrical active impurities
- Rigidity of silicon allows thin self supporting structures

- Detector production by microelectronic techniques
— well known industrial technology, relatively low price, small structures easily possible

- Alternative semiconductors

. Diamond Diamond | S1C (4H) | GaAs | S1 | Ge
_ ) Atomic number Z 6 14/6 | 31/33| 14 32
» Gallium arsenide (GaAs) Bandgap E, [eV] 55 33 | 142 [ 1.12]0.66
S E(c-h pair) [¢V] 13 7684 | 43 | 3.6 | 2.9
- Gallium nitride (GaN P
( ) density [g/cm’] 3.52 3.22 5.32 | 2.33 | 5.32
- Silicon Carbide (SiC) e-mobility . [em?/Vs] | 1800 800 | 8500 | 1450|3900
. Germanium {GE‘) h-mﬂb]llty Ly [cm—Ns] 1200 115 400 | 450 [ 1900
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Fluence definitions

1. Fluence — number of particles dN traversing the sphere of cross section ds:

_dN
¢_d5

¢

_dN _ adN
~ dS; dS cosf

When counting particles hitting the VELO sensors one should consider cosé:

______ d 5@

/4

S

/

That makes the particles crossing at large angle the most dangerous.

2. We can take the track length - fluence is then defined as the track length density:
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Limitations in Fluence Measurement at LHCDb

We have dose monitoring, but fluence cannot be reliably

measured with the installed sensors — simulations fill that gap

Sensor Type
« good for integrated dose, not particle Alanine / TLD / :
Passive ﬁuence. . p RPL rassie
dosimeters Passive /
s iv
Active - real-time dose, Fiv eloges Active
sensors * limited neutron fluence only. _ ]
BPW diodes Passive
High-energy
hadron « cannot be measured directly. MCP Passive
fluence
FLUKA « used to estimate fluence instead of direct UHTR Passive
simulations measurement.
REM box Active

9/24/2025 "2nd Symposium on New Trends in Nuclear and Medical Physics" Mattias_Karacson_2018
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https://indico.cern.ch/event/695271/contributions/2942617/attachments/1638519/2615248/Benchmarking_of_the_radiation_fields_MK.pdf
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