

First experimental demonstration of positronium lifetime imaging with the novel radionuclides ⁵⁵Co and ⁵²Mn using J-PET scanner

Manish Das, Sushil Sharma, Ewa Stepien, Pawel Moskal

On behalf of the J-PET collaboration

24-09-2025

A recap to the history

¹Moskal, P. et. al (2021). Positronium imaging with the novel multiphoton PET scanner. *Science Advances, 7*(42), eabh439.

²Moskal, P. et. al (2024). Positronium image of the human brain in vivo. *Science Advances, 10(37),* adp2840.

A recap to the history

¹Mercolli, L. et al (2025). Phantom imaging demonstration of positronium lifetime with a long axial field-of-view PET/CT and 1241. EJNMMI Physics 12

²Mercolli, L. et al. (2024). In Vivo Positronium Lifetime Measurements with a Long Axial Field-of-View PET/CT. medRxiv DOI:10.1101/2024.10.19.24315509

Limitations for clinical Translation

• ²²Na

- i. long half-life of 2.60 years and
- ii. Uptake in bones

• 68Ga

i. low probability–only 1.34 %–of prompt gamma rays being emitted along with the positron emission

• 124

i. 12% prompt gamma yield along with the positron emission

• 82Rb

- i. Short half-life of 1.26 minutes
- ii. only 13 % of its decays yield a prompt gamma along with the positron emission

Positronium imaging with 44Sc

44**S**c

- i. Clinically relevant half-life of **4.04 hours**
- ii. An ultrashort de-excitation delay of 2.61 picoseconds
- iii. High yield of **94.3% of decays** resulting in positron emission followed by a high-energy prompt gamma of 1157 keV with a **100% yield.**

¹Das M, et al. (Submitted) **First positronium imaging using 44Sc with the J-PET scanner: a case study on the NEMA-Image Quality phantom** *IEEE Transactions on Radiation and Plasma Medical Sciences*

Isotopes for Positronium Imaging

Isotope	$t_{1/2}$	Y_{β^+}	E_{max}	$R_{ m mean}$	R_{max}	E_{γ}	Y_{γ}	$Y_{\beta^++\gamma}$	$Y_{\beta^++\gamma}/Y_{\beta^+}$	$t_{1/2}^{\mathrm{deexc}}$	Comp. E.
		[%]	[MeV]	[mm]	[mm]	[MeV]	[%]	[%]	[%]	[ps]	[MeV]
²² Na	2.60 y	89.95	0.545	0.54	1.85	1.275	99.94	89.90	99.94	3.6	1.062
$^{52}{ m Mn}$	5.6 d	29.40	0.575	0.58	1.99	1.434	100	30	100	0.78	1.217
						0.936	94.5	29	98.69	6.7	0.735
						0.744	90	29	98.69	41	0.553
^{124}I	4.17 d	22.69	1.822	2.15	8.53	0.603	62.9	12	52.89	6.2	0.423
						0.723	10.36	0.25	4.58	1.04	0.534
$^{72}\mathrm{As}$	26.0 h	87.86	3.33	4.27	16.64	0.834	81	71	80.81	3.35	0.638
⁵⁵ Co	17.53 h	75.89	1.5	1.72	6.79	0.931	75	59	77.74	8	0.731
						0.477	20.2	13.5	17.79	37.9	0.311
						1.409	16.9	11.3	14.89	37.9	1.192
⁴⁴ Sc	3.97 h	94.3	1.474	1.69	6.65	1.157	99.9	94.3	100	2.61	0.948
⁶⁸ Ga	67.71 m	88.91	1.899	2.25	8.94	1.077	3.22	1.19	1.34	1.57	0.870
⁶⁰ Cu	23.7 m	92.59	0.653	0.67	2.37	1.333	88	81	87.48	0.735	1.118
\blacksquare						1.791	45.4	42	45.36	0.24	1.567
						0.826	21.7	20.4	22.03	0.59	0.631
$^{82}{ m Rb}$	1.26 m	95.36	3.382	4.34	16.92	0.777	15.1	13.5	14.16	4.45	0.584
$^{14}\mathrm{O}$	70.6 s	99.89	1.808	2.13	8.45	2.313	99.39	99.26	99.38	0.068	2.083
¹⁰ C	19.3 s	99.97	2.93	3.69	14.51	0.718	100	99.97	100	710	0.530

Moskal, P. et al (2025).

Positronium
Imaging: History,
Current Status, and
Future Perspectives.

IEEE Transactions on Radiation and Plasma Medical Science.

Isotopes for Positronium Imaging

Isotope	$t_{1/2}$	Y_{β^+}	$E_{\mathbf{max}}$	$R_{ m mean}$	R_{max}	E_{γ}	Y_{γ}	$Y_{\beta^++\gamma}$	$Y_{\beta^++\gamma}/Y_{\beta^+}$	$t_{1/2}^{\mathrm{deexc}}$	Comp. E.
		[%]	[MeV]	[mm]	[mm]	[MeV]	[%]	[%]	[%]	[ps]	[MeV]
²² Na	2.60 y	89.95	0.545	0.54	1.85	1.275	99.94	89.90	99.94	3.6	1.062
$^{52}{ m Mn}$	5.6 d	29.40	0.575	0.58	1.99	1.434	100	30	100	0.78	1.217
						0.936	94.5	29	98.69	6.7	0.735
						0.744	90	29	98.69	41	0.553
^{124}I	4.17 d	22.69	1.822	2.15	8.53	0.603	62.9	12	52.89	6.2	0.423
						0.723	10.36	0.25	4.58	1.04	0.534
$^{72}\mathrm{As}$	26.0 h	87.86	3.33	4.27	16.64	0.834	81	71	80.81	3.35	0.638
⁵⁵ Co	17.53 h	75.89	1.5	1.72	6.79	0.931	75	59	77.74	8	0.731
						0.477	20.2	13.5	17.79	37.9	0.311
						1.409	16.9	11.3	14.89	37.9	1.192
44Sc	3.97 h	94.3	1.474	1.69	6.65	1.157	99.9	94.3	100	2.61	0.948
⁶⁸ Ga	67.71 m	88.91	1.899	2.25	8.94	1.077	3.22	1.19	1.34	1.57	0.870
⁶⁰ Cu	23.7 m	92.59	0.653	0.67	2.37	1.333	88	81	87.48	0.735	1.118
						1.791	45.4	42	45.36	0.24	1.567
						0.826	21.7	20.4	22.03	0.59	0.631
⁸² Rb	1.26 m	95.36	3.382	4.34	16.92	0.777	15.1	13.5	14.16	4.45	0.584
¹⁴ O	70.6 s	99.89	1.808	2.13	8.45	2.313	99.39	99.26	99.38	0.068	2.083
¹⁰ C	19.3 s	99.97	2.93	3.69	14.51	0.718	100	99.97	100	710	0.530

Moskal, P. et al (2025).

Positronium
Imaging: History,
Current Status, and
Future Perspectives.

IEEE Transactions on Radiation and Plasma Medical Science.

Radioisotope preparation and properties

⁵⁵Co:

Produced at the **Heavy Ion Laboratory** of the **University of Warsaw** via the ⁵⁴Fe(d,n)⁵⁵Co reaction

- i. Half life of 17.53hr
- ii. High yield of **75.89 % of decays** resulting in positron emission followed by a high-energy prompt gamma of 931 keV with a **77.7% yield.**

⁵²Mn:

Produced at the **Hevesy Laboratory** in the **Department of Health Technology** at the **Technical University** of **Denmark** via the ⁵²Cr(p,n)⁵²Mn production route

- i. Half life of **5.6 days**
- ii. 29.4 % of decays resulting in positron emission followed by a cascade of three high-energetic prompt gamma photons with ~100% yield.
- iii. The prompt gamma emission with the EC remains a challenge

Modular J-PET

- 24 detection modules, Each contains 13 plastic scintillator strips with 4 SiPM on each side of a scintillator
- Triggerless data acquisition system
- Modular and Portable
- Weighs around 60 kg

P. Moskal and E. Ł. Stępień, "Prospects and Clinical Perspectives of Total-Body PET Imaging using Plastic Scintillators," *PET Clinics*, vol. 15, no. 4, pp. 439–452, Jul. 2020.

Experimental Setup

Experimental Setup

For the ⁵⁵Co measurement:

• Cardiac myxoma: 1.032 MBq,

Human adipose tissue 1.020 MBq,

Polycarbonate: 1.092 MBq, and

Fused silica: 1.071 MBq

This measurement lasted 15 hours and 5 minutes.

For the ⁵²Mn measurement:

Cardiac myxoma: 1.278 MBq

Human adipose tissue: 1.298 MBq

Polycarbonate: 1.346 MBq

Fused silica 1.354 MBq

This measurement lasted 19 hours and 44 minutes.

National Institute of Advanced Industrial Science and Technology (AIST) in Tokyo, Japan

Certified material Polycarbonate: 2.10 ± 0.05 ns

Certified material Fused silica: 1.62±0.05 ns

Positronium imaging with 55Co

TOT as a measure of the **Energy**

Result: Positronium imaging with 55Co

2+1 gamma image

Lifetime Spectra from CRM samples

Result: Positronium imaging with 55Co

Fit Results from Polycarbonate and fused silica

Voxel wise mean o-Ps lifetime (τ_{o-Ps})

Certified lifetime: Polycarbonate: 2.10 ± 0.05 ns Fused silica: 1.62±0.05 ns

		•	20		
Sample Name	$ au_{ m oPs}$ [ns]	<i>I</i> _{oPs} [%]	I _{direct} [%]	<i>I</i> _{pPs} [%]	$\Delta T_{\rm mean}$ [ns]
Polycarbonate	2.174 ± 0.024	20.34 ± 0.21	59.76 ± 0.24	9.90 ± 0.19	1.303 ± 0.003
Fused Silica	1.607 ± 0.012	36.30 ± 0.22	42.54 ± 0.22	11.15 ± 0.18	1.395 ± 0.003

 $55C_{\odot}$

Result: Positronium imaging with 55Co

Voxel wise mean o-Ps lifetime (τ_{o-Ps}) Voxel wise mean positron lifetime (ΔT_{mean})

$$\Delta T_{\text{mean}} = \sum_{i=-0.1 \text{ ns}}^{9 \text{ ns}} (N_i - N_b) \Delta T_i / \sum_{i=-0.1 \text{ ns}}^{9 \text{ ns}} (N_i - N_b)$$

Positronium imaging with 52Mn

TOT as a measure of the **Energy**

Result: Positronium imaging with 52Mn

2+1 gamma image

Lifetime Spectra from CRM samples

Result: Positronium imaging with 52Mn

Fit Results from Polycarbonate and fused silica

Voxel wise mean o-Ps lifetime (τ_{o-Ps})

Certified lifetime: Polycarbonate: 2.10 ± 0.05 ns Fused silica: 1.62±0.05 ns

52	Мn	l
----	----	---

Sample Name	τ_{oPs} [ns]	I_{oPs} [%]	$I_{\rm direct}$ [%]	$I_{\mathrm{pPs}}~[\%]$	$\Delta T_{\rm mean}$ [ns]
Polycarbonate	2.066 ± 0.071	22.40 ± 0.65	58.02 ± 0.75	9.57 ± 0.61	1.304 ± 0.011
Fused Silica	1.703 ± 0.041	37.82 ± 0.77	43.63 ± 0.76	8.54 ± 0.62	1.416 ± 0.012

Result: Positronium imaging with 52Mn

Voxel wise mean o-Ps lifetime (τ_{o-Ps})

Voxel wise mean positron lifetime (ΔT_{mean})

$$\Delta T_{\text{mean}} = \sum_{i=-0.1 \text{ ns}}^{9 \text{ ns}} (N_i - N_b) \Delta T_i / \sum_{i=-0.1 \text{ ns}}^{9 \text{ ns}} (N_i - N_b)$$

Result: 52Mn and 55Co

⁵⁵ Co							
Sample Name	τ _{oPs} [ns]	<i>I</i> _{oPs} [%]	I _{direct} [%]	<i>I</i> _{pPs} [%]	$\Delta T_{\rm mean}$ [ns]		
Polycarbonate Fused Silica	$\begin{array}{c} 2.174 \pm 0.024 \\ 1.607 \pm 0.012 \end{array}$	20.34 ± 0.21 36.30 ± 0.22	59.76 ± 0.24 42.54 ± 0.22	9.90 ± 0.19 11.15 ± 0.18	1.303 ± 0.003 1.395 ± 0.003		
			⁵² Mn				
Sample Name	$ au_{\mathrm{oPs}}$ [ns]	<i>I</i> _{oPs} [%]	I _{direct} [%]	<i>I</i> _{pPs} [%]	$\Delta T_{\rm mean}$ [ns]		
Polycarbonate Fused Silica	2.066 ± 0.071 1.703 ± 0.041	$22.40 \pm 0.65 \\ 37.82 \pm 0.77$	58.02 ± 0.75 43.63 ± 0.76	9.57 ± 0.61 8.54 ± 0.62	$1.304 \pm 0.011 \\ 1.416 \pm 0.012$		

 $I_{\text{poly}} = (0.56) I_{\text{silica}}$

⁵⁵Co:

 $I_{poly} = (0.560 \pm 0.006) I_{silica}$

⁵²Mn:

 $I_{poly} = (0.592 \pm 0.021) I_{silica}$

Ito, K., et al (2008). Interlaboratory comparison of positron annihilation lifetime measurements for synthetic fused silica and polycarbonate. Journal of Applied Physics, 104(2). https://doi.org/10.1063/1.2957074

Conclusion

- •The preliminary results from the ⁵²Mn and ⁵⁵Co are promising.
- •The mean o-Ps lifetime in the CRMs are in excellent agreement with the certified lifetime.
- •The mean positron lifetime is **consistent** for **CRMs** in both isotope.
- •The intensity ratio of the mean o-Ps lifetime is consistent with the previous reported result.

Acknowledgement

2021/42/A/ST2/00423

2021/43/B/ST2/02150

2022/47/I/NZ7/03112

PLGrid (ACK Cyfronet AGH, PLG/2024/017688).

Thank You

