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Universe composition described by
Standard Model (SM) of elementary particles
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- : mass generation
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Lagrangian formulation:

Lsm = Lsue) + Lsue),L + Lua),y

quarks

leptons

generations force carriers electro-weak
(or gauge bosons) symmetry breaking
I II III
uu ¢c tt ~
up charm top
anti-up anti-charm anti-top photon
dd ss bb W
down strange beauty
anti-down anti-strange anti-beauty W boson H
Higgs boson
ef ¥ 77 zZ°
Z boson
electron muon tau
anti-electron anti-muon anti-tau
VelWe VuUy VrUr g
o = F gluon
neutrino neutrino neutrino
fermions bosons



The Standard Model of elementary particles Can]

Universe composition described by
Standard Model (SM) of elementary particles

Particles:

- -Leptons (matter+antimatter)
- :interactions
- : mass generation

Interactions: strong-electroweak

Lagrangian formulation:
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Higgs boson discovered in 2012, still to characterize

SM alone can’t explain some observation like matter-antimatter asymmetry
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ttH in the Standard Model

Standard Model Production Cross Section Measurements
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ttH decay channels according to H decays:

Multilepton
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Large Hadron Collider (LHC) at CERN near Geneva (Switzerland)
Main experiments at LHC that can perform the measurment:

* ATLAS (A Toroidal Lhc ApparatuS): general purpose detector

* CMS (Compact Muon Solenoid): general purpose detector


https://atlas.cern/updates/press-statement/atlas-observes-tth-production
https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-17-035/index.html

s LD}

1972 157m
BOOSTER
14 GeV
1959 628m
< PS
26 GeV
1978 33m

LINAC2

50 MeV/

Large Hadron Collider (LHC) at CERN near Geneva (Switzerland)
Main experiments at LHC that can perform the measurment:
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Data-taking periods:

* Run 1(2010-2012) /s = 7-8 TeV

+ Run 2(2015-2018) /s = 13 TeV, used for this work

* Run 3 ongoing v/s = 13.6 TeV
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Large Hadron Collider (LHC) at CERN near Geneva (Switzerland)
Main experiments at LHC that can perform the measurment:

* ATLAS (A Toroidal Lhc ApparatuS): general purpose detector

Observation of the process:

* ATLAS 2018 (link), significance 6.3 o
using Run | plus partial Run Il data
Data-taking periods: using the three channels

+ Run 1(2010-2012) /s = 7-8 TeV + CMS 2018 (link), significance 5.2 o

- Run 2 (2015-2018) v/S = 13 TeV, used for this work using Run | plus partial Run II data
using the three channels

* Run 3 ongoing v/s = 13.6 TeV

* CMS (Compact Muon Solenoid): general purpose detector
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Motivations to search for CP violation in the Higgs-Yukawa couplings Can]

C and P symmetries
* Charge and Parity — important symmetries of the SM theory

Charge symmetry  Parity symmetry

o oo

+ C,P and CP violated by weak interaction — allow matter, anti-matter

asymmetry °
+ There is not enough CP to match observed matter predominance
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+ Top quark Yukawa coupling: largest coupling, order of unity



Motivations to search for CP violation in the Higgs-Yukawa couplings Can]

C and P symmetries
* Charge and Parity — important symmetries of the SM theory Charge symmetry  Parity symmetry

o oo

+ C,P and CP violated by weak interaction — allow matter, anti-matter
asymmetry °
+ There is not enough CP to match observed matter predominance

Yukawa interaction:

ﬁY:fermion - - (%;,Lyg@wﬁﬁ + E;LYZJ@"//UR + @;,LY?WQ/){}I,R+--->

* Yukawa interactions account for fermion masses in the SM

+ Measurement of Yukawa couplings ( yf}‘.) to fermions important probe for
new physics — could behave different from SM expectations

+ Top quark Yukawa coupling: largest coupling, order of unity
* ttH: allow probe top-Higgs coupling at tree level

+ Ideal to test possible CP violation in Yukawa interaction
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* CP parametrization in the top Yukawa coupling:
Ly.top,cp = =Yt {1516‘ MWM} ®

Ly.10p,cp = —yt {1 [cos(a) + isin(a)ys]e } o

Model information:

* Here a = 0 implies no CP-violation (= SM), y; = m;/v


https://link.springer.com/article/10.1140/epjc/s10052-017-4601-7
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* CP parametrization in the top Yukawa coupling:
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+ Here a = 0 implies no CP-violation (= SM), y; = m;/v

The plots set Higgs-top coupling to reproduce
the SM gluon-fusion cross section for every
value of « (link)

+ Usually use k¢, it — direct CP visualization

Model consequences:
e + Change in cross-section depending on CP hypothesis
+ Lower angles have a behavior that is difficult to distinguish from the
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ttH, H — ~~ CP results Can]
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ttH, H — bb CP results

Currently instead of machine learning techniques, recent results started using directly CP-observables
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ATLAS ttH(H— bb) (link) performed using CP-observables CMS ttH (link), H—bb, from cross-section measurement


https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.125.061802
https://arxiv.org/pdf/2407.10896

ttH, other channels CP results and combination

Very active field — still requires a final combination
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Full phase space Fiducial

» Differential: Measure cross-section in bins of observables
hase space

+ Fiducial: Extrapolate the measurement to a restricted phase
space matching experimental selections.

Fiducial differential cross-section measurements provide:

+ A fundamental test of the SM predictions;
Analysis

*+ A probe of phase spaces sensitive to BSM effects. selection
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Fiducial Differential Cross-Section Measurements Can]

Full phase space Fiducial

» Differential: Measure cross-section in bins of observables
hase space

+ Fiducial: Extrapolate the measurement to a restricted phase
space matching experimental selections.

Fiducial differential cross-section measurements provide:

+ A fundamental test of the SM predictions;
Analysis

*+ A probe of phase spaces sensitive to BSM effects. selection

Fiducial differential measurements main points:

+ Reduce model dependence by avoiding extrapolation to the full phase space
+ Long measurement lifetime and easy comparison with different theories

+ Limited to few variables at the same time
+ Hard to combine different channels without extrapolating to full phase space
+ Non-trivial to include complex variables (e.g. DNNs) in fiducial phase space



Simplified Template Cross-Sections (STXS) Can]

+ STXS (link) developed as alternative to Higgs boson coupling measurements (Fiducial differential measurments)
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Simplified Template Cross-Sections (STXS) Can]

+ STXS (link) developed as alternative to Higgs boson coupling measurements (Fiducial differential measurments)
+ STXS separate the measurement and interpretation steps more cleanly.
+ Reduces theory dependencies folded in the measurements, including:
+ Theoretical uncertainties
+ Underlying physics model assumptions
+ Enables more finely-grained measurements for richer theoretical interpretation.
+ Supports and improves global combination across all Higgs decay channels.
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STXS and extension idea targeting CP violation in the top Yukawa coupling

STXS main points:

- simplify combination between
channels/measurements

- minimize the dependence on theory
uncertainties

- maximize the experimental
sensitivity

- isolate possible BSM effects




STXS and extension idea targeting CP violation in the top Yukawa coupling

STXS main points:

- simplify combination between
channels/measurements

- minimize the dependence on theory
uncertainties

- maximize the experimental
sensitivity

- isolate possible BSM effects

+ Goal: developing an STXS extension targeting better
ttH CP sensitivity

+ CP-odd excluded by various studies at 40 — Obtained
without the STXS framework

¢ |a]< 45° — decide to target 35°
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Study setup
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* Generating ttH events with MadGraph5_aMC@NLO
+ Scale factor to take into account for NLO effects
+ Any CP hypothesis can be obtained as
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Event generation and observables

[
NLO inclusive cross section X 0
o

7

45°

G/Ogy

Yt=Vism

.
0° 30° 60° 90° 120° 150° 180°

Rest-frames considered:
+ laboratory frame (lab frame),
+ ttrest frame, where p; + p; = 0 (tt frame),
* ttH rest frame, where p; + p; + py = 0 (ttH frame),

* Hrest frame, where py = 0 (H frame)

cnrs]

* Generating ttH events with MadGraph5_aMC@NLO

+ Scale factor to take into account for NLO effects

+ Any CP hypothesis can be obtained as

N (H;, at) = K;’Z |:NSM cos? at + Nogd sin® a1:|

+ Studied a group of possible discriminating

observables

+ Assume H, t and t reconstructed

observable definition frame
oY - lab, tt, ttH
Ang e — gl lab, H, ttH
Agg [dr — 3| lab, H, ttH
mg (Pt + pr)? frame-invariant
My (pe + p; + pr)? frame-invariant
. p.n _
cos (0°) LA &
by (P(xﬂl)-(?;X") all
(P xﬁmg xn)
oo I
b Ipe] \g; a
by L all
PrPL
by i all
Ipel g
bc arecos (\(pm *Pry) <p,xpm) o

[Po; <Ppy | [pexpy]




Examples of distributions at parton-level Can]

PT,H cos(0*) = \p'j?irm
L a=0° o = 35° —_— a =45 —— =90 )_ — - — — .
| a=0 A 0|
0.3t H ttH?parton) 0.125} ttH (parton)
:9.: lab-frame = Hframe
= £ 0.100
Z 09} E
g £ 0075
E . Z 0.050
0.1 =
M= =
— L = 0.025 L]
0.0, 0.00
0 200 400 600 800 . 8.0 0.2 0.4 0.6 0.8 10
PrH |cos 6%
Lab frame T frame

* Normalized distributions for some examples of observables

+ Here the t and t kinematics is needed (no need to distinguish them)
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Examples of distributions at parton-level - other observables
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* Normalized distributions for some examples of observables

+ Here the t and t kinematics is needed (no need to distinguish them)
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Analysis strategy
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Detector effects and significance evaluation Can]

* Channels considered: ttH(H— ~~), ttH(H— bb) and ttH— multilepton final states
+ Took into account: acceptance / efficiency factors for event selection, smearing of the Higgs and top/antitop for

reconstruction effects
* Yields validated from ATLAS/CMS results

>
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Detector effects and significance evaluation Can]

* Channels considered: ttH(H— ~~), ttH(H— bb) and ttH— multilepton final states

+ Took into account: acceptance / efficiency factors for event selection, smearing of the Higgs and top/antitop for
reconstruction effects

+ Yields validated from ATLAS/CMS results

>

* Metric to judge the sensitivity of the various observables assuming acceptance, smearing, luminosity of 300 fo—?
+ Account for statistical and systematic uncertainty, in each bin o is:

— )52 2
Ti = \/ Tsys + Ogat

* Define significance S according to link: taking n; the SM- and m; the BSM-{tH yield per bin

Nbins Nblns /
m;(n + o?) n? a?(m; — )
S= Si=,2 niln — L1+ -2
2 Z(’ {n2+m,a ] o? { T+ ?)
- 23
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Initial results and optimization
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Initial studies

* Considered 31 different observables across four rest frames plus two-dimensional combinations
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Initial studies

lab frame

indep.

H frame

tt frame

ttH frame
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* Highest significance from 2D combination of observables
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+ Decided to use pr 4 with a second observable (to build on the existing STXS setup) — combined values similar to
the best combination A¢; plus by
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Smelwmerae (o)

* Highest significance from 2D combination of observables
* The highest significance is obtained when combining A¢; and by in the lab frame

+ Decided to use pr 4 with a second observable (to build on the existing STXS setup) — combined values similar to
the best combination A¢; plus by

a; =35  HHQL=3001f" 14 (6 x 6) bins for 1d (2d) dist. ~ comb. w/ piph;

H =y

Multilep.| 0.53 | 0. 09 089 087 0.73 0.69 054 052 045 0.77 08 048 0.82 0.56

H — bb] 0.35 ] 0. 0.52 052 051 045 044 038 036 029 047 049 03 05 0.38

Combined

prE Ang Adg by by by by my mugmg PTH Anyglcos 6% by by b3
~ —————

— —

lab frame indep. tt frame
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* Best results from combining p¥f with A¢l2, bi®, Ang, g=1, plab,
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oeparssopumzeanens @Y

* Best results from combining pff with A¢®, b, An'l, 61, bleb.

+ For these pairs:
* binning optimization performed targeting six bins to determine best pair
« distributions presented below (comparing SM scenario with o = 35°)
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Best pairs & Optimized binning

* Best results from combining p¥f with A¢l, bi®, Ang, g1, plab,

+ For these pairs:
* binning optimization performed targeting six bins to determine best pair
+ distributions presented below (comparing SM scenario with o = 35°)

* Here showing A¢ and At

—_—a=0° «=35° —_—a=0° a= 35°J
N,ll(pzu-',m;)_ ttH(— ~ =] ttH (parton) ttH(— vy)
" lab-frame lab-frame " = ti-frame _\_.‘ ti-frame
- - 2 b 4
= 0.2f r £ 015 L —_—
2 2 —
= 0.0 ' + = 0.00
g (EH (multilep.) 1EH (— bb) -g (EH (multilep.) HEH (— bb)
N lab-frame lab-frame N — ti-frame = ti-frame
= = j 1
E Lr - g iy [ L pany
= 02} - £ 015 — ] L=
[S) ) | '
= = v !
i le=co-o le=oc-d
0.0 : : . . :
0 30 3 0085 25 0.0 25
AP0, /4, 7/2, 27 /3, 57 /6, 117 /12, 7] An:0,05,1,15,2,3,5]
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Best pairs & Optimized binning

* Other two examples below: bi** and ot

—_— a=0° a=35° —_— a=0° = 35°

) tEH (parton) ) HH (= 77) ttH (parton) HH(— ~v7)
w0 lab-frame lab-frame 1) ti-frame ti-frame
£ 025 1 1 £ 015 = |
Qo Q0 1
< 0.00 — — [ < 0.00 — ! -
e} 1 H (multilep.) HEH (= bb) so] tiH (multilep.) tEH (> bb)
8 lab-frame lab-frame 8 ti-frame tE-frame
= 025 - ] £ 015 "1 ] ]
3 3 L (S
zZ Z,

'_|_‘ '_!_‘
0-007 0 1 0 0095 0.5 0.0 0.5
bl [-1,-0.95,-0.8,-0.2, 0.3, 0.8, 1.0] 0*:10,0.2,0.4,0.55,0.7,0.85, 1]
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* Results of significance after bin optimization: very close performances

+ No clear winning and preferred candidate between them

a; =35  tHH @ L=300fb""  comb. w/ plah;

Multilep.| 0.49 § 0.94  0.95 0.92

0.55 0.55 0.55

Combined

\pTﬂ A¢y by by Ang |cos 0%

~ B
lab frame tt frame
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* Sensitivity of the observables in the various bins compared to the background distributions for the most sensitive
observables
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* Sensitivity of the observables in the various bins compared to the background distributions for the most sensitive
observables

+ Observables where the significance could have been over-estimated due to low signal over background ratio are
excluded
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* Sensitivity of the observables in the various bins compared to the background distributions for the most sensitive
observables

+ Observables where the significance could have been over-estimated due to low signal over background ratio are
excluded

+ Example on three observables of background shapes

----- ttW (parton) ---= ttyy(parton) ttbb(parton)
—— {IH combined sig. @ g =1, oy = 35° £ =300 fb!
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* Multivariate studies are preferred for these studies — Checked effect of applying it in our scenario
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* Multivariate studies are preferred for these studies — Checked effect of applying it in our scenario

+ All observables were given to a BDT that was optimized targeting the best sensitivity
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* Multivariate studies are preferred for these studies — Checked effect of applying it in our scenario

+ All observables were given to a BDT that was optimized targeting the best sensitivity

Events (normalized)

— = 0P at:35°]
rﬁ.iftH (multilep.) rﬁh_l ttH(— bb)
1 I 1 | L
0.05} 1 - Lo 3 I
LA T L | 1
- i LL|_|_ [ y | b
r r .
() || MLH‘L___' s
0.04 05 0.0 05 0.0 05

BDT score
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* The significance of the BDT output was then compared, checking if it was bringing an increase of performances
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* The significance of the BDT output was then compared, checking if it was bringing an increase of performances

Channel Significance (BDT) | Significance (2D)
{tH(— vv) 1.75 1.57
{tH (multilep.) | 1.17 0.94
ftH(— bb) 0.69 0.55
Combined 2.21 1.91

+ Significances from the BDT method are higher, only moderately:

+ ~10% improvement for H — vy

+ ~17% improvement for H — multilepton

+ ~25% improvement for H — bb
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* The significance of the BDT output was then compared, checking if it was bringing an increase of performances

Channel Significance (BDT) | Significance (2D)
{tH(— vv) 1.75 1.57
{tH (multilep.) | 1.17 0.94
ftH(— bb) 0.69 0.55
Combined 2.21 1.91

+ Significances from the BDT method are higher, only moderately:

+ ~10% improvement for H — vy
+ ~17% improvement for H — multilepton
+ ~25% improvement for H — bb
+ Greater BDT sensitivity in:
« ttH (multilepton)
« {tH — bb

+ These channels benefit from selecting more ttH events and exploiting kinematic shapes.
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* The significance of the BDT output was then compared, checking if it was bringing an increase of performances

Channel Significance (BDT) | Significance (2D)
{tH(— vv) 1.75 1.57
{tH (multilep.) | 1.17 0.94
ftH(— bb) 0.69 0.55
Combined 2.21 1.91

Significances from the BDT method are higher, only moderately:

+ ~10% improvement for H — vy

+ ~17% improvement for H — multilepton

+ ~25% improvement for H — bb
Greater BDT sensitivity in:

« ttH (multilepton)
« ttH — bb

These channels benefit from selecting more ttH events and exploiting kinematic shapes.

Conclusion: two-dimensional distributions are sufficient to reach near-optimal sensitivity for
probing CP violation in the top-Yukawa coupling.
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Final result and proposed STXS extension
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Expected sensitivity to CP: STXS extension with |cos0™|

- H—7yy ---- Multilep.  ---- H —1bb
---- Combined ttH @ £ =300 fb~!
lab
Pry
20 H T T T T m Y
! 1 1 1
! 1 1 \
[} 1 1 1
'l i \ \
i 11 1 1
4 i i 9
1.5 [
'/~\ P
K3 1;'\ :"\/’__“\ A
AN 17
’, \\\\ ,I,I l‘
1.0 1 \‘\\‘ » # N
/’I \“J “\
/ N

L L L L L
05260250 0 30 60
ar [

* Expected exclusion limits considering our model use 300 fb—!
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Expected sensitivity to CP: STXS extension with |cos0™|

- H—7yy ---- Multilep.  ---- H —1bb
---- Combined ttH @ £ =300 fb~!
lab lab *
PT.H (P7r,| cos 07))
20— T T T ¥ 2.0 T T T T
P o r I
! ! 1 1 P (B
i ! \ \ [ [
! | \ 1 [ (W
| 1
Voo I P i
1.5 [ 1511 [
;’."\ - il 18
< AN A —>» PN eyl
Lok i N i A Lol A L AN
=t 5% - | S B XS o T -
,,’ \\~&/ “‘\ ',' :" ‘~~\-"’ i ‘I\ “\
/ g L
L’ N ,/I ,I, \\‘\ \\
0.5 | | | | | 0.5 S 1 1 1 LN
’ —60-30 0 30 60 ’ —60-30 0 30 60

at [7]

Expected exclusion limits considering our model use 300 fb~"

a [7]

+ Finallimitat xj = 1, || < 36° at 68% CL — 12% better with respect to not using |cos *|
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Expected sensitivity to CP: STXS extension with |cos0™|

- H—7yy ---- Multilep.  ---- H —1bb
---- Combined ttH @ £ =300 fb~!
lab lab *
PT.H (P7r,| cos 07))
20— T T T 1 2.0 T T T T
P t Vi i
! ! 1 1 P (B
i ! \ \ [ [
! | \ 1 [ (W
| 1
Voo I P i
L5t (R 1L5F 1 [
s -y [ il
-~ 'l“ (-v-\l /l“ 9 & "' :"1' '/:'\\‘__,,"”“\‘ “1: |
Lok AN R Lok A AN
] S » - | S B XS » 2 T -
Ill \\~J ‘\‘\ ’II ”' ‘~~\__——‘ 4 ‘I“ “‘\
/
b’ AN ,// /1’ \\‘ \\
0.5 | | | | | 0.5 S 1 1 1 | n
’ —60-30 0 30 60 ’ —60-30 0 30 60
() o
at [°] ay []

* Expected exclusion limits considering our model use 300 fb—!
+ Finallimitat xj = 1, || < 36° at 68% CL — 12% better with respect to not using |cos *|

+ Maximum improvement of 40% at «; = 1.24

* Results are similar combining pr 4 with b and Ang
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---= H -y -=-=Multilep. ---- H —bb
---- Combined tH @ £ =300 fb™'
lab X
(P7.11,] cos 07) BDT
2.0 T T T 2.0 ] i
F [ ! [}
1 1
ol [} r 1
i (I H Vo
o it i o
15p—1- = Lop iy b
[ [ o [ LI}
< o Py > . e SR
S (W] Se—— 1
Lok 4 A B Lok b
. RN * P . A )
: / I" S “‘ “‘ III ," et A
o Y . Vi
L’/ N S \ ‘\\
05-.;.11..1..1..1..1.‘. 05// 3
’ —60-30 0 30 60 ’ —60 =30 0 30 60
ar [] o [

* Expected exclusion limits considering our model use 300 fb—"

+ Comparison limits vs the BDT approach shows a clear but not so drastic improvement
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Expected exclusion limit at High-Luminosity LHC

P (6 bins)

Combined limits

—=== pi% (36 bins)

£ = 300/ 3000 fb*

b 0" (6 % 6 bins)J

1.6 1.2
1.4}
S, 11
12k /N AN
w el H S~ ! >
> L || )lll =
LOF 2\ Ny, ) 1.0
0.8
60 =50 0 30 60 0-9
a [7]

=30 =15 0 15 30
at [°]
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Expected exclusion limit at High-Luminosity LHC

-------- plj"{l}{ (6 bins)

Combined limits

—=== pi% (36 bins)

£ = 300/ 3000 fb*

b 0" (6 % 6 bins)J

1.6
1.4}
s ) $
1.0f x‘\*\ (\_/7/,/5
[ N S
0.8
60 =50 0 30 60
a [7]

* Constraints in the (k;, ) plane for (blue) £ = 300fb~ ' and (red) £ = 3000/b" at the 95 % CL using the

one-dimensional pr 4 distribution

1.2

1.1

1.0

0.9

~

=30 =15 0 15
at [°]

30
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Expected exclusion limit at High-Luminosity LHC

-------- plj"{l}{ (6 bins) —_——— plj{t}{ (36 bins) plﬁl}{ +6* (6 x 6 bins)
Combined limits £ = 300/ 3000 fb*
167 1.2
14
AR, . 1.1 e
LN AN oV
1.2k .
s ) s \"//),
LOF >\ Ny ) 1.0 3
; N\ / /
0.8
60 =50 0 30 60 09520 15 30
o [7] o []

* Constraints in the (k;, ) plane for (blue) £ = 300fb~ ' and (red) £ = 3000/b" at the 95 % CL using the
one-dimensional pr 4 distribution

+ Evaluation using 6 (dotted line) and 36 (dashed line) bins and the two-dimensional (pr 4, |cos 0*|)
distributions (solid line, 6 x 6 bins)

+ £ =3000fb—" also presented with the £ = 300fb—" contour 36



Extended proposition for STXS in ttH Can]
pT7H[GeV]: 0

60
120
200

300

450
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Conclusion
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eecpanaoneo @

We presented a study to extend STXS targeting CP in ttH using three channels
The sensitivity based on 2 suitable variables is similar to that of a multivariate analysis

Our sensitivity study shows that b‘zab, ATIf—?, and |cos 6*| are similarly good 2nd variables, in combination
with pr 4

Up to 40% improvement in some area of the phase space

39


https://link.springer.com/article/10.1007/JHEP10(2024)214

eecpanaoneo @

.

* We presented a study to extend STXS targeting CP in ttH using three channels
+ The sensitivity based on 2 suitable variables is similar to that of a multivariate analysis

+ Our sensitivity study shows that b‘zab, ATIf—?, and |cos 6*| are similarly good 2nd variables, in combination
with pr 4

+ Up to 40% improvement in some area of the phase space

J

* The full study is published: link

+ To implement the proposal — parton level top quark definition needs to be added to the STXS framework

+ Have been consider applying this new approach in ongoing measurements
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https://link.springer.com/article/10.1007/JHEP10(2024)214

Thank you for your attention

40



BACKUP
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ttH (H—bb) JHEP 06 (2022) 97

© T T T T T T T T
§ ATLAS # Data [ L] W+ =1

@D ggeh 15=13TeV, 139 fb" miH O + =1c @@+ v

[t = light []Other - Uncerainty

Analysis Strategy (at 139 fb-1)
* Results in the STXS formalism;
5 STXS Higgs pr bins Single lepton
* Two main analysis channels;
single-lepton or dilepton
¢ Signal/control regions defined by
number of jets, b-tagged jets
» Additional boosted Higgs
categories for single-lepton

Single-lepton
categories

ATLAS
15 =13 TeV, 138 1" i
lexpton [+ =1c
- W+ V[N + light
B! £[0,120) GeV [Other - Uncertainty |
Post-Fit

PP Mu/mxz«/,z,f/f%//— A%%Z/&;/;»o SUUPT

5 5 & [
R pone fgﬂ e e e e £ e
2o 0,
2g) 209 .s'go) %so) "°-’Gs %"Sa) -So.,o) .

oo o
Dol

ta / Pred

;

= Different MVVAs used for
reconstructing Higgs boson
candidate and event classification

* Large irreducible background

1azsc E mainly from tt+=1b constrained by
BssnssssssamsgpsonBans A dedicated Control regions (CRs)

0875 E

1 -08 -06 -04 -02 0 02 04 06 08 1
Classification BOT
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https://indico.cern.ch/event/1253590/contributions/5928179/

ttH bb channel - 1 Can]
ttH (H—bb) JHEP 06 (2022) 97

*: namalised fo tokal Bk “: nommaliaed 10 1ota] Bkg.
AL A B T

Background modeling 7 s sons R - apeoes o ]
. @O0 AT, 198 I b B ezib ] DT o3 Tew, 10 e WA= ]
= tt+bb background modelled with 4 [ Srgeiepn me | Edestc S o mi Sieee
flavour-scheme NLO QGD accuracy S e B s 5 Urewiorsy |

T e

= Main shape systematic uncertainties:
Initial and final state radiation, parton
shower, NLO matching, relative
fractions of tt+heavy flavor components

enoo_; -

» Additional uncertainty to account for E . . 1 E s E|
misfmodeling observed in § o.;;_.. A . oy _j % u?;.. e f
reconstructed PT.higas = 6 @on @00 4bo mon  son O L T T

HIgS Dorson candidans f [Gav] Hggs bason candidate p_ (GeV]

ATLAS (s=13 TeV, 139 b, m =125 GeV

SM compatibility: 45% * Inclusive results:

—Total —Stat. Tot. { Stat. Syst) = 0.35 % 0.20 (stat.) T33 (syst.) = 0.350:35
hoeoE e | e 088 T8 C3E GY == 00 o)
i P 1120.200) (G = 018 Nz (6 ) Measured p for five separate

L4 u (A" i
1,,; Bl [200,300) (GeV] [ — 1.05 080 (=hI0 DSy bine H P PT.higas
' [300,450) [GeV] .t -0.19 0T (h3E eDaE e .
i o Pl = Sensitivity dominated by large
iy PEMS0N GV | ke 010 T Cosi Cros) theoretical uncertainties on
N +0.36 ,+0.20 +0.30 - .

Inclusive b 0.35 %35y (Co20 ‘n2s) irreducible tt+=1b background

2 0 2 4 & 8 10 12

u = oG,
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e @Y

Analysis Strategy (at 139 fb-1)

= targets ttH/tH production along w/other
Higgs productions through Simplified
Template Cross Sections (STXS)
formalism where cross-section is
measured as a function of truth pru

* In total 45 STXS regions defined

* based on targeted production, Higgs
pr and number of jets

Event fraction

016
014

ttH/tH (H—»yy)

T T T
signul selected ATLAS Slmulahun
Signal rejected ¥5 =13 Tel, 138 fio”’, H—yy
Other processes

1iH, 80 = pif < 120 GeV

-

Event Fraction

. ]J'

ey

| S——— __I s o 1 | 1 1 L L
002 004 008 008 0.1 012 0.14 0.6
Multiclass BDT output

Oprmm)

STXS category assignment:

T
ATLAS

VE=13TeV, 138 6", H

FofH B0 pll<120 Gev
0121

= Multi-classifier BDT sensitive to
particular STXS regions + additional
binary BDT trained to distinguish signal
from background

* tHgb class divided into two sub-classes
using a neural network to distinguish
between x: = 1 and x: = -1, and further
categorization done to separate signal

01 02 03 04 05 CIB 07 DE 09

-

from background events
BDT score
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ttH +y channel - 1 Can]
ttH/tH (H—vyy)

* Results for STXS parameters in each ATLAS Y513 TeV, 139 b
of the 28 phase-space regions : H—yy m, =12509GeV ly <25

» 5 ttH pr bins and additional tH oot e 3w [l e o e
category (pr inclusive)

* Inclusive: u;, = 0.894032  pu, =34

= |nterpretation of the results in k-
framework; sensitivity to sign of
Kt thanks to tH categories —

K; < 0 excluded at 2.2c

ATLAS V5 =13 TeV, 139 16" H—» vy
= 60 : ; T
Y] A 3
' 50_ 1 using ki in the ggF
E 1and H — yy loops
40__ 9g—+H and H—yy

- Resolved {expected)
Resclved (obse

30 {obssrvedt)

Effective (expected)

Effective (observed)

200

101

RCL.C

0 | I L fixed to the SM prediction
-15 -1 05 0 0.5 1 1.5

L K .
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ttH - indirect CP constraints (EDM)

Ky de=1

Higgs prod. |

Hg EDM

neutr. EDM

w 0.0
=0.2
—0.4
1.0 -05 0.0 0.5 1.0 0.90 0.95 1.00 1.05 1.10
Kt Kt

Figure 2. Left: Present constraints on x; and #; from the electron EDM (blue), the neutron
EDM (red), the mercury EDM (brown), and Higgs physics (gray). Right: Projected future con-
straints on x; and &y, see text for details.

Y < 7
LD ——— (keff+ iRefysf) h
\@(f f’Ys)

where f = t,b,7 and y; = v/2my/v is the SM Yukawa coupling with m; the fermion mass and v ~ 246GeV
the electroweak symmetry breaking vacuum expectation value of the Higgs field. The couplings % are CP
violating, while ks parametrize CP-conserving NP (see link) 46


https://arxiv.org/pdf/1310.1385

Various channels info

* Various factor utilized to scale the distributions for the three channels
+ They were taken from available info from published papers in the three channels

Smearing factors

Acceptance factors

tH(parton) {tH(— 7v) ftH(multilep.)  ttH(— bb) {tH(parton) ftH(— 77) ftH(multilep.)  tfH(— bb)
a=0° 1 2510 36-102  50.10° Apry None 4GeV 120GeV 80GeV
a =35° 1 25.10" 36-10 2 52.107° Apr. None 40GeV 70GeV 70GeV
a=45° 1 2.7-107" 38-102 54.107° Ay None 0.5 0.8 0.8
o =90° 1 3210 42107 65-10° Agy None None 20° 20°
factors + Ratio
{tH(parton) {tH(— vv) {tH(multilep.)  ttH(— bb)
BR 1 227-10° 679-102 58110
a=0°  Normalized 93 401 473
o =235 Normalized 77 328 397
o =45° Normalized 69 290 358
a=90° Normalized 45 180 244
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