Evolution of the data acquisition and processing system in J-PET

Grzegorz Korcyl Department of Information Technologies 2023

The key concepts

• Field-Programmable Gate Arrays in the center of the system

- Reduction of the analog part
 - Analog signal discrimination and digitization with FPGA
- Migration of functionalities into flexible FPGAs
 - Time-Digital-Converter implemented using FPGA resources
 - Data already in the chip faster readout, less deadtime, less overhead
- Less prone to costly mistakes and long hardware production cycles

The key concepts

- Continuous readout
 - No hardware trigger
 - Simplified circuits
 - Less deadtime
 - Higher throughput
 - No hardware pre-selection
 - Simplified logic
 - No artificial bias and artifacts
 - More context for deeper offline analysis
 - High level of the background
 - High data rates
 - Requires precise time synchronization
 - Common synchronization pulse on dedicated TDC channel
 - Common clock distribution

Korcyl G.: A system for acquisition of tomographic measurement data Patent Application No. US 20160209522A1, 2016

The key concepts

Apply verified standards and solutions

- Do not reinvent the wheel
- Avoid common mistakes
- Reduce development time and costs
- Custom hardware on Front-End level only
- Commercially available platforms on other levels
- Standardized interfaces and protocols in Firmware
- Industry supported IPs

The first J-PET system

- System based on TRB platform in 2015
 - Experience from medium-scale HEP experiments
 - Jagiellonian University as part of the developers team
 - Versatile platform for complete systems
 - Over 30 hardware components
 - Complete software packages for control/monitoring, data handling
 - Verified by dozens of users in multiple experiments
- TRBv3
 - Lattice ECP3 FPGA as board controller
 - 4x Lattice ECP3 FPGA as configurable peripherals with add-on cards
 - Inter-board communication with optical links and custom protocol
 - Synchronization with dedicated LVDS lines
 - Gigabit Ethernet data output

Control and

Monitoring

Slave TRB 1

Data

Time-Digit

The first J-PET system

- System extended with a dedicated processing board in 2017
 - Xilinx Zynq045, 8x Ethernet inputs, 8x Ethernet outputs
 - Man-in-the-middle card
 - Online data processing (coincidences, calibrations, LOR, ROR calculation)
 - Produces live visualizations
 - Preserves original, raw data streams
 - Selectable operation mode
- Conclusions
 - Minimalistic FEE and signal digitization and time measurement in FPGA are satisfactory
 - Fast protocols and large throughput required for continuous readout
 - Spare logic resources required for potential pre-processing
 - TRBv3 was designed in 2011 on Lattice FPGAs, modern hardware required

The second generation

- New prototype based on silicon photomultipliers high channel density
- Xilinx/AMD introduced efficient hardware families and dev. tools
- FEE digitization platform redesigned
 - Artix200 as TDC and system Endpoint
- Xilinx commercial boards:
 - Virtex Ultrascale VCU108 as data concentrator
 - Zynq Ultrascale+ MPSoC ZCU102 as system controller
- 3x more analog channels 15x more logic resources

Design and development by M. Pałka

FPGA Resources over years

cells [kCells]

The second generation

- Efficient communication is the key
 - Downstream:
 - Precise time synchronization synchronous links, clock distribution
 - Control/monitoring messages
 - Upstream:
 - Measurement data transport to the nearest Ethernet Gateway
 - Native Xilinx Aurora protocol
 - 5 Gbps default link speed
 - Enhanced with synchronous mode
 - Easily reusable on variety of hardware platforms
 - Easily integrable with native AXI logic interfaces

Clock and sync pulse receiver Buffered data transmitter

- Source of the master clock
- Sync pulse generation
- Control/monitoring gateway

The second generation

- Hardware capabilities
- Collection of logic function blocks
 - Sync. Transmitter/Receiver for GTP, GTX, GTH, GTY
 - Sync. decoders
 - Data collectors, forwarders
 - Time-Digit Converters
 - Control/monitoring

CCB IFJ PAN, Kraków 2021

- Flexible setup construction
 - Small test setups: one master and one endpoint
 - Full-scale modular J-PET
 - One master (ZCU102)
 - 4x Data Concentrators (VCU108)
 - 48x Endpoints (MTAB, FTAB)
- Complemented with an easy to use Python software package

Lab setup, Kraków 2023

Hospital Banacha, Warsaw 2022

Sync receiver

Total-Body DAQ module

- Compact with high channel density
 - Single board for an entire module
 - TDC section:
 - 356x TDC channels on 6x Artix200 FPGA (Endpoints)
 - 10x DACs for threshold setting and SiPM tuning
 - Analog signal amplifiers
 - HUB section:
 - 1x Artix200 FPGA as Concentrator
 - 2x general purpose optical links
 - Data from the entire module in a single FPGA
 - Complex online pre-processing capability

Design and development – M. Kajetanowicz

Summary

- Over 10 years of electronics, firmware and software design, development and implementation
- A versatile and flexible DAQ system for recent and future J-PET projects
 - Based on stable and verified components (HW, standards, protocols)
 - Functional backbone (time sync, data collection, control/monitoring)
 - Precise time measurement in distributed setups
 - Exchangeable Endpoints for future upgrades or adaptations
 - Expandable with data pre-processing logic cores

The DAQ group:

- Actual members:
 - Marcin Kajetanowicz
 - Piotr Kapusta
 - Wojciech Migdał
 - Szymon Niedźwiecki
 - Grzegorz Korcyl
- Former members:
 - Paweł Strzempek
 - Tomasz Bednarski
 - Marek Pałka
 - Karol Farbaniec
 - Maciej Bakalarek