

" KAONIC ATOM AT DAFNE COLLIDER IN ITALY: A STRANGENESS ODYSSEY "

Francesco Sgaramella on behalf of the SIDDHARTA-2 collaboration

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI FRASCATI

SIDDHARTA-2 COLLABORATION

Silicon Drift Detectors for Hadronic Atom Research by Timing Application

LNF-INFN, Frascati, Italy

SMI-ÖAW, Vienna, Austria

Politecnico di Milano, Italy

IFIN –HH, Bucharest, Romania

TUM, Munich, Germany

RIKEN, Japan

Univ. Tokyo, Japan

Victoria Univ., Canada

Univ. Zagreb, Croatia

Univ. Jagiellonian Krakow, Poland

ELPH, Tohoku University

HadronPhysics IS

Study of Strongly Interacting

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

STR@NG-<mark>2()20</mark>

Why Kaonic Atom?

Kaonic Atom

Scientific Goal

Scientific goal: first measurement ever of kaonic deuterium X-ray transition to the ground state (Is-level) such as to determine its shift and width induced by the presence of the strong interaction, providing unique data to investigate the QCD in the non-perturbative regime with strangeness.

Analysis of the combined measurements of kaonic deuterium and kaonic hydrogen

$$\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^{3}\mu_{c}^{2}a_{K^{-}p}(1 - 2\alpha\mu_{c}(\ln\alpha - 1)a_{K^{-}p})$$

(μ_c reduced mass of the K⁻p system, α fine-structure constant)

U.-G. Meißner, U.Raha, A.Rusetsky, Eur. phys. J. C35 (2004) 349 next-to-leading order, including isospin breaking

$$a_{K^{-}p} = \frac{1}{2} [a_0 + a_1]$$

$$a_{K^{-}n} = a_1$$

Experimental determination of the isospin-dependent K-N scattering length

Kaon-nucleon scattering length

DAPNE – e^+e^- collider

 $\Phi \rightarrow \mathrm{K}^{\text{-}}\,\mathrm{K}^{\text{+}}\,(48.9\%)$

Monochromatic low-energy K⁻ (~127 MeV/c ; $\Delta p/p = 0.1\%$)

Less hadronic background compared to hadron beam line

DAΦNE LINAC DAMPING RING

Suitable for low-energy kaon physics: kaonic atoms Kaon-nucleons/nuclei interaction studies

The SIDDHARTA-2 setup and DAΦNE collider

48 Silicon Drift Detector arrays with 8 SDD units (0.64 cm²) for a total active area of 246 cm² The thickness of 450 μm ensures a high collection efficiency for X-rays of energy between 5 keV and 12 keV

SIDDHARTINO - The kaonic ⁴He 3d->2p measurement

Characterization of the SIDDAHRTA-2 apparatus and optimization of DA Φ NE background through the kaonic helium measurement

Sirghi D., Sirghi F., Sgaramella F., et al., 2022, J. Phys. G Nucl. Part. Phys., 49 (5) 55106

10

The Kaonic ⁴He measurement

- Kaonic He measurement with the full SIDDHARTA-2 setup
- Improved accuracy on the L α energy shift width
- Measurement of kaonic carbon nitrogen oxygen and aluminium

The Kaonic ⁴He – M-series transitions

First observation and measurement of kaonic helium M-series transition, with implication on kaonic helium cascade models

12

The Kaonic ⁴He yield

New experimental data for cascade models calculations

The X-ray yield is the key observable to understand the de-excitation mechanism in kaonic atoms and develop more accurate models.

First measurement of K-⁴He M-series transition

Study of yield density dependence for the K-⁴He L α transition

Density	1.375 g/l	pped K ⁻	0.3	Т	SIDDHAR	TA-2		Ī			
L_{α} yield	$0.119 \pm 0.002 (\text{stat})^{+0.006 (\text{sys})}_{-0.009 (\text{sys})}$	per sto	0.25	1 	SIDDHAR	TINO FA		•			
M_{β} yield	$0.026 \pm 0.003 (\text{stat})^{+0.010 (\text{sys})}_{-0.001 (\text{sys})}$	<- He L _α	0.2							Ī	
L_{β} / L_{α}	$0.172 \pm 0.008 (\text{stat})$	I	0.15	\bigwedge					(<u>+</u>)		
L_{γ}/L_{α}	$0.012 \pm 0.001 (\text{stat})$			ł		(t)		V		
L_{β} / M_{β}	0.91 ± 0.14 (stat)		0.1	V						l	
$\dot{M}_{\gamma}/\dot{M}_{\beta}$	$0.48 \pm 0.11 (\text{stat})$		0.05								
M_{δ} / M_{β}	0.43 ± 0.12 (stat)		0								
			(0.8	1	1.2 1	.4 1.	6 1.	.8 2 Gas	2 2 2 density /	2.2 (g/l)

Sgaramella F., et al, submitted to J. Phys. G Nucl. Part. Phys

Sirghi D.L., Shi H., Guaraldo C., Sgaramella F., et al., 2023, Nucl. Phys. A,1029 122567

13

The Kaonic Neon measurement

First measurement of kaonic neon X-ray transitions (record of precision < 1 eV)

The (charged) Kaon mass puzzle

DENISOV 91

The kaonic deuterium measurement

- First run with SIDDHARTA-2 optimized setup for 200 pb⁻¹ integrated luminosity: May July 2023 completed
- Second run Autumn Winter 2023 goal: 300 pb⁻¹ on going
- Third run 2024 goal: 300 pb⁻¹
- Calibration runs: Kaonic He; Kaonic Ne; Kaonic H;

Kaonic deuterium run ongoing

2023/24

Monte Carlo for an integrated luminosity

of 800 pb⁻¹

to perform the first measurement of the strong interaction induced energy shift and width of the kaonic deuterium ground state (similar precision as K-p) !

Significant impact in the theory of strong interaction with strangeness

Kaonic deuterium shift and width (theoretical predictions)

Beyond SIDDHARTA-2: why still kaonic atoms?

Except for the most recent measurements at DAFNE and JPARC on KHe and KH, the database on kaonic atoms dates back to 1970s and 1980s

402

These data are the experimental basis for all the developed theoretical models

These theoretical models are <u>used</u> <u>to derive</u>, for example:

- KN interaction at threshold
- KNN interaction at threshold
- Nuclear density distributions
- Possible existence of kaon condensates
- Kaon mass
- Kaonic atoms cascade models

Fig. 7. Shift and width values for kaonic atoms. The continuous lines join points calculated with the best-fit optical potential discussed in Section 4.2.

Beyond SIDDHARTA-2: why still kaonic atoms?

			E. Friedman et al. / Nuclear Physics A579 (1994) 518-538 52						
		Table 1 Compilati	on of K ⁻ aton	nic data					
1	The available data on "lower lovels"	Nucleus	Transition	ε (keV)	Γ (keV)	Y	Γ_{μ} (eV)	Ref.	
1.	The available data on Tower levels	He	3→2	-0.04 ± 0.03	-	-	_	[15]	
	have hig uncertainties			-0.035 ± 0.012	0.03 ± 0.03	-	-	[16]	
110	nuve org uncertainties	Li	3→2	0.002 ± 0.026	0.055 ± 0.029	0.95 ± 0.30	-	[17]	
2. M U	Many of them are actually	Be	$3 \rightarrow 2$	-0.079 ± 0.021	0.172 ± 0.58	0.25 ± 0.09	0.04 ± 0.02	[17]	
		¹⁰ B	$3 \rightarrow 2$	-0.208 ± 0.035	0.810 ± 0.100	-	-	[18]	
	INmagurad	B	$3 \rightarrow 2$	-0.167 ± 0.035	0.700 ± 0.080	-	-	[18]	
	UMIICasulcu	C C	$3 \rightarrow 2$	-0.390 ± 0.080	1.730 ± 0.130	0.07±0.013	0.99 ± 0.20	[18]	
3. N	Many of them are hardly	Ma	$4 \rightarrow 3$	-0.025 ± 0.018 -0.027 ± 0.015	0.017 ± 0.014 0.214 ± 0.015	-	-	[19]	
		Al	$4 \rightarrow 3$	-0.130 ± 0.050	0.214 ± 0.015 0.490 ± 0.160	0.78±0.00	0.08 ± 0.03	[20]	
		74	4 / 5	-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	-0.30 ± 0.04	[19]	
	compatible among each other	Si	4 → 3	-0.240 ± 0.050	0.810 ± 0.120	-	-	[20]	
				-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 + 0.06	[19]	
4. Re	Relative yields with upper levels are not always measured	P	$4 \rightarrow 3$	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30	[18]	
		S	$4 \rightarrow 3$	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36	[18]	
				-0.43 ± 0.12	2.310 ± 0.170	-	-	[21]	
				-0.462 ± 0.054	1.96 ±0.17	0.23 ± 0.03	2.9 ± 0.5	[19]	
5.	Absolute yields are basically	Cl	$4 \rightarrow 3$	-0.770 ± 0.40	3.80 ± 1.0	0.16 ± 0.04	5.8 ± 1.7	[18]	
				-0.94 ± 0.40	3.92 ± 0.99	-	-	[22]	
				-1.08 ± 0.22	2.79 ± 0.25	-	-	[21]	
	ulikilowii (except ioi iew transitiolis)	Co	$5 \rightarrow 4$	-0.099 ± 0.106	0.64 ± 0.25	J -	-	[19]	
6		141	$5 \rightarrow 4$	-0.180 ± 0.070	0.59 ± 0.21	0.30 ± 0.08	5.9 ± 2.3	[20]	
6.	The REmeasured ones have been	Cu.	$5 \rightarrow 4$	-0.240 ± 0.052 -0.240 ± 0.220	1.23 ± 0.14 1.650 ± 0.72	$-$ 0.20 \pm 0.11	-	[20]	
		Cu	3-74	-0.240 ± 0.220 -0.377 ± 0.048	1.050 ± 0.72 1.35 ± 0.17	0.29 ± 0.11 0.36 ± 0.05	7.0 ± 3.0	[20]	
	proved WRONG	Aσ	6→5	-0.18 ± 0.12	1.55 ± 0.17 1.54 ± 0.58	0.50 ± 0.05	73 ± 47	[19]	
	1	Cd	$6 \rightarrow 5$	-0.40 ± 0.10	2.01 ± 0.44	0.57 ± 0.10	62 ± 28	[19]	
		In	$6 \rightarrow 5$	-0.53 ± 0.15	2.38 ± 0.57	0.44 ± 0.08	11.4 + 3.7	[19]	
		Sn	$6 \rightarrow 5$	-0.41 ± 0.18	3.18 ± 0.64	0.39 ± 0.07	15.1 ± 4.4	[19]	
This situation would already be a		Ho	$7 \rightarrow 6$	-0.30 ± 0.13	2.14 ± 0.31		_	[23]	
		Yb	$7 \rightarrow 6$	-0.12 ± 0.10	2.39 ± 0.30	-	-	[23]	
I	proper justification for new	Та	7→6	-0.27 ± 0.50	3.76 ±1.15	~	-	[23]	
1		РЬ	8 → 7	-	0.37 ± 0.15	0.79 ± 0.08	4.1 ± 2.0	[24]	
1	magguramants			-0.020 ± 0.012	-	-	-	[25]	
	แม่สุรุนา ซาแซแปร	U	8 → 7	-0.26 ± 0.4	1.50 ± 0.75	0.35 ± 0.12	45 ± 24	[24]	

Beyond SIDDHARTA-2: EXKALIBUR

Proposal to perform fundamental physics at the strangeness frontier at DA Φ NE (Italy) and JPARC (Japan) Kaonic atoms data are the experimental basis for all the theoretical models used to derive: KN, KNN interaction at threshold, Kaon mass, cascade models, possible existence of kaon condensates

EXtensive

Kaonic Atoms research: from LIthium and Beryllium to URanium

Precision measurements along the periodic table at for:

- Kaonic Hydrogen: 200 pb⁻¹ with SIDDHARTA-2 setup – to get a precision < 10 eV (KH)
- Selected light kaonic atoms (LHKA) Li, Be, B
- Selected intermediate and heavy kaonic atoms charting the periodic table (IMKA) Pb, C, Al
- Ultra-High precision measurements of Kaonic Atoms (UHKA)

Kaonic atoms at DAONE collider: a strangeness adventure C. Curceanu et al.,

doi.org/10.3389/fphy.2023.1240250

Exploiting DAΦNE

DA Φ NE delivers almost 4π K⁻

We want to exploit this unique beam as much as possible to perform important physics measurements

Kaonic Lead Measurement at DAΦNE with HPGe

HPGe provided by Zagreb University (Croatian Science Foundation project 8570) to perform the kaonic lead measurement in parallel with the SIDDHARTA-2 kaonic deuterium measurement

3.1. Detection unit GCD-30185 characteristics

#	Parameter	Value				
1.	Relative efficiency (with respect to 3'' x 3'' NaI detector and Co-60 source mounted 25 cm above the detector) at 1.33 MeV γ -photon	> 30 %				
2.	Energy resolution* at • 122 keV • 477.6 keV • 1.33 MeV *Measured with spectrometric device MS Hybrid at input count rate 1000 pulses/sec, shaping time constant = 6 µsec	875 eV 1400 eV 1850 <u>+</u> 30 eV				
3.	Peak shape: • FWTM/FWHM • FW.02M/FWHM	< 1.9 < 2.65				
4.	Spectral Broadening of FWHM up to 100,000 counts/sec for 1.33 Mev	< 8 %				
5.	Peak position shift	<+/- 0.018 %				
6.	Peak to Compton ratio, not worse	58:1				
7.	Energy range of detector operation 40 keV - 3 MeV					
8.	Material of input window Al					
9.	Cooling time	< 8 hours				
10.	Liquid nitrogen holding time in Dewar vessel	> 15 days				
11.	Dewar volume	301				
12.	 Preamplifier (built – in detector capsule) with cooled FET and transistor reset preamplifier (TRP) Preamplifier power supply is ±12 V with 9 pin connector compatible with NIM standards TTL signal to shut down the HV: - detector warm -0V; - detector cold: +5V HV INHIBIT – BNC 					

The Kaonic Lead Measurement

First run performed in June - July 2023 (109 pb⁻¹)

Preliminary

- (10 -> 9) : 906 events in peak (integration of fitting function gaus+linear) position 209.191 ± 0.171 keV; σ/\sqrt{N} = 0.0057 keV
- (9 -> 8) : 947 events in peak (integration of fitting function gaus+linear) position 292.939 ± 0.134 keV; σ/\sqrt{N} = 0.0044 keV
- (8 -> 7) : 943 events in peak (integration of fitting function gaus+linear) position 427.2 ± 0.152 keV; σ/\sqrt{N} = 0.0049 keV

lvica Friščić (and SIDDHARTA-2 collaboration) -Mini workshop on kaonic atoms: present status and future plans, 18th July 2023

Heavy and medium mass kaonic atoms measurements

CdZnTe detectors,

developed in collaboration with University of Palermo

(Abbene, L.; et al. Potentialities of CdZnTe Quasi-Hemispherical Detectors for Hard X-ray Spectroscopy of Kaonic Atoms at the DAFNE Collider. Sensors 2023, 23, 7328.)

Detector Key Points:

- High efficiency in the 20-100 keV region
- Reasonable efficiencies up to 300 keV
- Good resolution (FHWM/E ~ %)
- Fast response and time resolution (< 50 ns)
- No need for cooling
- Compact readout and installation package

Conclusions

> Kaonic Atoms are a unique tool to study the kaon-nucleon interaction

- Tool to directly probe low energy QCD
- Rich of implications from nuclear and particle physics to astrophysics
- Measurement of Kaonic-Deuterium key to fully disentangle isospin dependence on KN scattering lengths

SIDDHARTA-2 at DAFNE

- ✓ The most precise Kaonic ⁴He $3d \rightarrow 2p$ measurement in gas
 - Energy shift and width
 - Yield at 3 different density 1.9 g/l, 1,37, and 0.82 g/l
- ✓ First measurement ever of Kaonic ⁴He M-series transitions
- ✓ First measurement of several solid target high-n transition energies
- ✓ First kaonic Neon measurement -> implications on kaon mass

Kaonic deuterium run in going

- ✓ First phase completed. 200 pb⁻¹ collected
- **EXKALIBUR:** fundamental physics at the strangeness frontier at DAFNE

