

Overview* of the ATLAS heavy-ion

program

Seminar on Particle Physics Phenomenology and Experiments Dominik Derendarz March 20, 2023

*personal biased selection

Heavy ion collisions - QCD laboratory

2

Heavy ion collisions - QCD laboratory

Heavy ion collisions allows to reach high enough temperature to trigger the phase transition to QGP (for about few fermi or few 10⁻²³ s)

Signatures of QGP formation

Collective phenomena

Jet quenching

Initial **spatial** anisotropy is converted to **momentum** anisotropy of final state particles

• Energy loss of high pT patron due to the interactions with the QGP medium

Heavy ion collisions - QED laboratory

ATLAS detector

Solenoid magnet | Transition radiation tracker

Muon chambers

Semiconductor tracker

Heavy ion datasets

System	Year	sqrt(s _{NN}) [TeV]	L _{int}
Pb+Pb	2010	2.76	7 μb ⁻¹
Pb+Pb	2011	2.76	0.14 nb ⁻¹
рр	2012	8	19.4 fb ⁻¹
рр	2013	2.76	4 pb ⁻¹
p+Pb	2013	5.02	29 nb ⁻¹
рр	2015	5.02	28 pb ⁻¹
Pb+Pb	2015	5.02	0.49 nb ⁻¹
p+Pb	2016	5.02	0.5 nb ⁻¹
p+Pb	2016	8.16	0.16 pb ⁻¹
Xe+Xe	2017	5.44	3 μb ⁻¹
рр	2017	5.02	270 pb ⁻¹
Pb+Pb	2018	5.02	1.76 nb ⁻¹

For **Run3** (2022-2024) expected:

- $\sim 6nb^{-1} \text{ of } Pb + Pb$
- p+Pb ~X nb⁻¹
- Short pilot run with
 0+0 and p+0

Run1

Run2

Centrality of heavy ion collision

- One nucleon can interact many times due to the thickness of the other nuclei that he see
- <N_{part}>, <N_{coll}> estimated based on MC Glauber fits to data

Centrality of heavy ion collision

Peripheral collision

Central collision

Bare eye jet quenching from 2010

Inclusive jet spectra

Nuclear modification factor R_{AA}

Where nuclear overlap function $\langle T_{AA} \rangle$

$$\langle T_{\rm AB} \rangle_{\rm f} = \langle N_{\rm coll} \rangle_{\rm f} / \sigma_{\rm inel}^{\rm NN}$$

calculated in the Glauber MC approach (arXiv:nucl-ex/0701025)

Calibration of the T_{AA} scaling

arXiv:1910.13396 [nucl-ex]

Probes that are not interacting with the QGP medium (W, Z, γ) follows the $\langle T_{AA} \rangle$ scaling.

Jets R_{AA}

arXiv:1805.05635 [nucl-ex]

in the entire kinematic range

Dijet asymmetry

Balanced pair of jets produced near the centre of the collisions zone

Unbalanced pair of jets produced near the edge of the collisions zone

Dijet asymmetry

 p_T^2

the centre of the collisions zone

 p_T^{\perp}

arXiv:2205.00682 [nucl-ex]

1 dN_{pair} N_{pair} dX_J = **ATLAS** 3.5 −Pb+Pb 2.2 nb⁻¹ *pp* 260 pb⁻¹ 3 112 < p_{T,1} < 126 GeV 🗕 0 - 10% 40 - 60% pp 2.5 2 $p_T^{\mathbf{1}}$ 1.5 Unbalanced pair of jets produced near the edge of the collisions zone anti- $k_t R = 0.4$ p_T^2 0.5 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0 0.9 0.4 0.5 0.6 0.7 0.8 0.3

 $(x_J = p_T^2/p_T^1) x_J$

Dijet asymmetry

Balanced pair of jets produced near the centre of the collisions zone

Unbalanced pair of jets produced near the edge of the collisions zone

Photon tagged jet RAA

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2022-14/

Photons and Z's can help to calibrate the parton energy, however:

- Rare process compared to the dijets production
- Flavour fraction differs compared to dijets

Photon tagged jet RAA

Photons and Z's can help to calibrate the parton energy, however:

- Rare process compared to the dijets production
- Flavour fraction differs compared to dijets sample dominated by quark initiated jets

B-jet R_{AA}

b-jets are less suppressed than **inclusive jets**

$$\frac{\min(p_{\mathrm{T}}^{sj_1}, p_{\mathrm{T}}^{sj_2})}{p_{\mathrm{T}}^{sj_1} + p_{\mathrm{T}}^{sj_2}} > z_{\mathrm{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

- The soft drop grooming procedure ($\beta = 0$ and $\mathbf{z}_{cut} = 0$
 - 0.2) is applied to determined opening angle of the hardest splitting (**r**_g)
- Jets re-clustered using Track-CaloClusters as constituents to improve angular resolution

to improve angular resolution

r_g

• The soft drop grooming procedure ($\beta = 0$ and $\mathbf{z}_{cut} =$ 0.2) is applied to determined opening angle of the hardest splitting (\mathbf{r}_{g})

 $\frac{\min(p_{\rm T}^{sj_1}, p_{\rm T}^{sj_2})}{p_{\rm T}^{sj_1} + p_{\rm T}^{sj_2}} > z_{\rm cut} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$

 Jets re-clustered using Track-CaloClusters as constituents to improve angular resolution

$$\frac{\min(p_{\rm T}^{sj_1}, p_{\rm T}^{sj_2})}{p_{\rm T}^{sj_1} + p_{\rm T}^{sj_2}} >$$

- The soft drop grooming procedure (β = 0 and z_{cut} = 0.2) is applied to determined opening angle of the hardest splitting (r_g)
- Jets re-clustered using Track-CaloClusters as constituents to improve angular resolution

Collectivity in heavy-ion collisions

Geometry driven v₂

Collectivity in heavy-ion collisions

ATLAS Pb+Pb

JHEP 11 (2013) 183

100

Event 2

ATLAS Pb+Pb

Event 1

80

Collectivity in heavy-ion collisions

Multi particle cumulants

Longitudinal flow de-correlation (here de-correlation of v_2 at increasing η distance)

Correlation between v_n harmonics and mean p_T in the event (here for v_2)

Correlation between v_n harmonics and mean p_T in the event (here for v_2)

Disclaimer - by no means this is not complete list, it is only meant to show increasing complexity

Constraining QGP parameters

Collectivity in small systems

One of the most striking observations from LHC data is a presence of collective effects in p+Pb, pp and even smaller collision systems.

- It is still unclear what is the smallest droplet of QGP that behaves hydrodynamically
- Are there any other QGP like effects present in small systems ?

Jet vn

Phys. Rev. C 105 (2022) 064903

measurement of the jets wrt. collision geometry this varies the amount of QGP that the jet sees

Jet vn

36

Jet quenching in light ions collisions

Measurements of p+A type of collisions at LHC and RHIC left us with unresolved problem: how to connect soft QGP with lack of modification in the hard sector?

OO is a symmetric system about the size of p+Pb

Photon induced process

Boosted nuclei are intense source of photons

• Coherent photon flux with **Emax ~ 80 GeV @ LHC** Various types of interactions possible:

- Using ZDC to categorize events (0n, Xn)
- Rapidity gap helps to distinguish photo nuclear from inelastic Pb+Pb events

Exclusive di-lepton production in UPC

Exclusive di-lepton production is one of the fundamental processes in $\gamma + \gamma$ interaction \rightarrow benchmark process to understand other γ induced processes.

Cross section for di-lepton production depends on the photon fluxes from each nucleons.

arXiv:2207.12781 [nucl-ex]

Exclusive di-lepton production in UPC

Run: 366268 Event: 3305670439 2018-11-18 16:09:33 CEST

Exclusive di-lepton production in UPC

Using $\gamma\gamma \rightarrow \tau\tau$ process to set limits on anomalous

magnetic moment of tau lepton (a_{τ})

(Much less constrained than $a_e a_\mu$)

arXiv:2204.13478 [hep-ex]

Photo-nuclear production of di-jets

Clean probe to explore poorly constrained region at low-*x* and intermediate Q²

Flow in photo-nuclear collisions

Flow in photo-nuclear collisions

Using high statistics LHC data and new techniques bring us to era of precise measurements of QGP produced in heavy-ion collisions

We still need new measurements

- Each observable is sensitive to different aspect of probing the QGP
- Some observables are statistics hungry looking forward for more data
- Interesting opportunity to study new collision system(s) (0+0 LHC Run3, future of heavy ion program?)
- Growing interest in UPC physics

More details on ATLAS public results page:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavylonsPublicResults

Jets in vacuum

Jets: collimated showers of energetic particles that carry a large fraction of the energy available in the collisions

- In Theory: jets are proxies for hard-scattered partons
- In Experiment: jet is what your jet-finder gives you

Quark or gluon

inside of nucleon

Quark or gluon inside of nucleon

Jets in the medium

Jets: collimated showers of energetic particles that carry a large fraction of the energy available in the collisions

- In Theory: jets are proxies for hard-scattered partons
- In Experiment: jet is what your jet-finder gives you

Interactions of medium and colored probe: elastic scattering, medium induced radiation, "drag force", medium excitation ?

Initial cross-section unchanged by presence of medium (modulo change in nPDF)

Quark or gluon inside of nucleon

> Quark or gluon inside of nucleon

Jets reconstruction - ATLAS heavy ion style

- Average response (<pT^{rec} / pT^{truth}>) within 1% from unity almost independent on centrality
- Jet energy resolution (σ(p_T^{rec} / p_T^{truth}))
 dominated by the underlying event fluctuations.

Jets reconstruction - ATLAS heavy ion style

Quenching of b-jets

The dependence of quenching on the type of parton that initiates the jet may provide insight into the underlying dynamics

- Type of parton that initiates the jet is difficult to determine experimentally
- Machine learning techniques used in experiments to identify b-jets

Inclusive jet spectra

Path length dependent energy loss

• Jet v_n

Jet structure

Flow measurements

Method	Pros	Cons
Event plane	Simple to use Used widely by experiment and theory	Results susceptible to non-flow effects Comparison between experiment depend on event plane resolution
Scalar product	Simple to use Uniform treating of detector acceptance	Results susceptible to non-flow effects
Two particle correlation	Simple to use Used widely by experiment and theory	Results susceptible to non-flow effects
Multiparticle cumulants	Large reduction of non-flow effects	Difficult in computation (large cpu resources) Requires large signal
Lee Yang Zeros	Complete reduction of non-flow effects	Difficult in computation (large cpu resources) Requires large signal

Stages of HI collision

properties of QGP state.

Magic of the template fit

PRL 110 182302 (2013) PRL 116 172301 (2016)

Looking for v_n in smaller systems is challenging due the presence of the large non-flow background

Magic of the template fit

