

Studies of pion-induced reactions with HADES

UJ Particle Physics Phenomenology and Experiments Seminar

OUTLINE:

- Motivations of the HADES experiment,
 HADES detector,
- 3) Pion-induced reactions at p_{π} = 0.7 GeV/c:
- I. Studies of baryon structure with pion beam,II. Studies of pion and proton emission channels with C target (INCL, SMASH, GiBUU, RQMD),4) Conclusions and outlook.

Izabela Ciepał 06. 02. 2023

HADES: exploring dense QCD matter

- Equation-of-State: First order transition ? Search for a critical point
- ➤ Chiral symmetry restoration
- Microscopic structure of baryon dominated matter
 Role of baryonic resonances, hyperons
- ➤ Complementary to SPS, RHIC,..

A+A: 1-3A GeV √s=2-2.4 GeV

Observables:

- Correlations and fluctuations
- ✓ Collective effects
- ✓ Strangeness
- ✓ **Dileptons**

HI and elementary collisions

baryon-dominated matterrole of vector mesons

P. Hohler, R. Rapp, Phys. Lett. B 731 (2014) 103

→ in-medium ρ broadening → chiral symmetry restoration

 $\rho(760)/a_{1}(1260)\,$ become degenerate at $T\sim T_{c}$, $\mu_{b}\,$ =0

Electromagnetic structure of baryons

Dalitz decays of baryon resonances

Covariant quark model +VMD

T. Pena & G. Ramalho

Two-component Lagrangian model M.Zetenyi & G. Wolf

Phys. Rev. C 104, 015201 (2021)

• Microscopic calculations based on 2-component VDM Lagrangian

High Acceptance DiEelectron Spectrometer

- ✓ SIS18 beams: protons (1-4.5GeV), nuclei (1-2AGeV), pions (0.4-2 GeV) secondary beam
- ✓ Spectrometer with $\Delta M/M$ ~ 2% at ρ/ω
- ✓ PID (π /p/K): ToF (TOF/RPC, T0 detector), tracking (dE/dx)
- ✓ momenta, angles: MDC+ magnetic field
- ✓ electrons: RICH
- ✓ neutral particles: ECAL
- ✓ full azimuthal, polar angles $18^{\circ} 85^{\circ}$
- ✓ e+e- pair acceptance ~0.35

Baryon resonances - exclusive e+e- analysis

HADES: Phys. Rev. C 95, 065205 (2017)

Dalitz decay studies of heavier baryons

HADES: EPJ A50, 82 (2014)

Motivations for pion beam experiments with HADES

HADES + GSI pion beam is an ideal (unique in world) tool to:

- Study the time-like electromagnetic structure of baryons
- Complete the very scarce pion beam data base for hadronic couplings
- **Dilepton channel** $R \rightarrow Ne+e$ -, **never** measured in pion induced reactions

Pion beam facility @ GSI

Eur. Phys. J. A 53, 188 (2017)

2-pion production in π -p

HADES: Phys. Rev. C 102, 024001, (2020)

Branching ratios of N(1440), N(1535), N(1520) to 2π channels ($\Delta \pi$, σ N, ρ N) \rightarrow 8 new entries (4 first + 4 additional entries)

11

Selection of quasi-free $\pi^- p \rightarrow ne+e-$

HADES Coll. arXiv:2205.15914 [nucl-ex]

10 $\pi^-+CH_2 \rightarrow e^+e^-X$ a) CH, • cut on invMe⁺e⁻ >140 MeV (π^0 removed) $p_{\pi} = 685 \text{ MeV}/c$ $d\sigma/dM_{miss}$ ([nb] / (MeV/ c^2) $M_{ee} > 140 \text{ MeV}/c^2$ selection of π -p \rightarrow ne+e- exclusive channel using missing mass cut (η removed) • quasi-free treatment of π -C interaction $S \rightarrow e^+e^- X$ $d\sigma/dM_{ee} \left(nb/(MeV/c^2) \right)$ $\pi^-+CH_2 \rightarrow e^+e^-X$ $p_{\pi} = 685 \text{ MeV}/c$ 900<M_{miss}<1030 MeV/c² 3 $\pi^- + p \rightarrow e^+ e^- X$ $\pi^0 \rightarrow \gamma e^+e^-$ C) $\pi^{-}+p \rightarrow n e^{+}e^{-}$ (QED) sum total р 2 n e⁺e $n \eta [\eta \rightarrow \gamma e^+ e^-]$ 200 400 600 0 $M_{\rm ee}$ (MeV/ c^2) n 800 1000 1200 1400 $M_{\rm miss}~({\rm MeV}/c^2)$

Effective time-like transition form factor $R_{QED} = (d\sigma/dM)/(d\sigma/dM)_{QED}$

HADES Coll. arXiv:2205.15914 [nucl-ex]

- M_{ee} < 200 MeV/c² consistency with QED reference
- Strong excess at larger M_{ee} (up to a factor 5)

VDM1 - gives reasonable description Lagrangian model – very promising Time-like FF - dominant pion cloud contribution (pion emFF)

Summary

- HADES & **pion beam** is an unique tool to understand in details **baryon**couplings:
 - → significant off-shell contribution originating from N(1520)D₁₃ shown by combined PWA,
 - → $D_{13}(1520)$ coupling to -N: 12+/-2 %,
 - → very new information on electromagnetic baryon transitions in the time-like region,
- Proposal for pion beam experiment in 2025 in the third resonance region.

Investigate heavier resonances N(1620), N(1720), ... in e+e- channels and many hadronic channels, e.g. $\pi\pi$ N, ω n, η n, K⁰A, K⁰ Σ ,

Studies of pion and proton emission channels with C target

Main goal: microscopic structure of baryon dominated matter and role of baryonic resonances in the 2nd resonace region.

- test of transport models used as a tool to identify medium effects (study of various reaction mechanisms)
- in heavy-ion collisions at a few AGeV, pion dynamics crucial to describe the evolution of the collision:
 - \rightarrow real pions copiously produced

Previous investigations with pion beam:

- P_{π} < **250 MeV/c:** Δ (1232) resonance region well-known.
- **300**< P_{π} <**500 MeV/c**: few measurements (π , πx) or (π , $\pi \pi x$) (LAMPF, TRIUMF, KEK).
- P_π>500 MeV/c: only total cross sections (Saturne-1, NIMROD, BNL) and differential elastic cross sections (KEK).

Transport models

- Nucleon Fermi gas,
- Binary interactions: inelastic collisions through resonance/string excitation and decay,
- All **baryonic resonances** included (Δ(1232), N(1440), N(1520), ... up to M=2 GeV/c²),
- Elementary cross-sections adjusted to data.

 $\pi N \rightarrow R(string), R \rightarrow \pi N, \pi \pi N$ $pp \rightarrow pR, R \rightarrow \pi N$

BUU (Boltzmann-Uehling-Uhlenbeck transport equation)		QMD (Quantum Molecular Dynamics)		
GiBUU	SMASH	RQMD.rmf	UrQMD	
https://gibuu.hepforge.org	https://smash-transport.github.io		http://urqmd.org	
momentum-dependent mean field potential	mentum-dependent mean field potential an field potential	potential: sum of potentials from surrounding particles (wave packets)		
		momdep.	non momdep.	
only field-type (continuous) interaction via the mean field, no N-N int. (except for collisions)		particle moves in the potential + collides with neighbours		
		N-N interaction		

Open issues

INCL++ cascade model

https://irfu.cea.fr/dphn/Spallation/incl.html

- Based on transport equations, but constant potentials are applied.
- Baryon spectrum: only $\Delta(1232)$ resonance is included.
- Dynamic creation of composity nuclear products (surface coalescnece).
 Applications:
 - GEANT4
 - Interaction of pions in detectors (e/π discrimination)
 - Neutrino physics.

$\pi^{-+12}C @ 685 MeV/c$

Our strategy:

- ► Test transport models and INCL++: investigate various exit channels of π^- + ¹²C in the 2nd resonance region to constrain the description of various processes:
- ➤ quasi-elastic, rescattering, pion absorption,...
- ➤ Generation of events following different models,
- ➤ Events processed through detector material (GEANT),
- Reconstruction of simulated events same as data events.
- "inclusive": p, π^+ , π^- , d, t (TOF/RPC Mult2 trigger)
- quasi-elastic: $\pi^{-}+{}^{12}C \rightarrow p+\pi^{-}+X$ (SRC, rescattering)
- 2-particle: π⁻π⁻, π⁻π⁺, pp, pπ⁺, pπ⁻
- 3-particle: pπ⁻π⁻, pπ⁺π⁻, ppπ⁻, ppp

- Models:
- INCL
- RQMD.rmf
- SMASH
- GiBUU

PRELIMINARY – ongoing analysis

$\pi^{-+12}C @ 685 MeV/c$

 $\pi^{-}+{}^{12}C @ 685 MeV/c$

Summary and outlook

- **Pion on carbon reactions** are under investigation:
 - \rightarrow comprehensive analysis of inclusive, quasi-free and 2-3-particle correlations,
 - → comparison to various transport models (SMASH, GIBUU, RQMD) and cascade INCL model – large dispersion of the predictions (!)
 - → INCL++ does a **rather** good job for channels with detected pion $p\pi^+$, $p\pi^-$,
- New paper on π^-+C , π^-+W at $p_{\pi}= 1.7$ GeV/c *HADES Collab. arXiv:2301.03940 [nucl-ex]*
 - HADES and GSI pion beam facility is very unique tool to study electromagnetic structure of baryons via Dalitz decays.
 - Cold nuclear matter studies with C target: important for the interpretation of in-medium hadron properties studied in HI collisions.

Thank You for Your Attention

• ECAL (lead glass)

HADES Spectrometer UPGRADE

HODO, fRPC, STS2, STS1

→NEW Trigger Box **innerTOF & TOF/RPC**

innerTOF (fast trigger)

START T0 detector

Low Gain Avalanche Detectors for the HADES reaction time (T) detector upgrade (Eur. Phys. J. A (2020) 56: 183)

- timing $< 100 \, \text{ps}$ ►
- PCB in the beam vacuum
- rate capability 10⁸ p/s
- 2 cm x 2 cm, 96 channels
- pitch 387 µm

STS2 STS1

new RICH

Selection of quasi-free $\pi^- p \rightarrow ne+e-$

- cut on **invMe**⁺e⁻ >140 MeV (above π^0 mass)
- missing mass cut on $\mathbf{M}_{_{miss}}(\eta \text{ removed})$

- π^-C simulations using Pluto (qfs participant-spectator model)
- production cross sec. on C for: π^0 , η , ρ , γ deduced from the scaling: $R_{C/H} = \sigma_C / \sigma_H$
- **CH**₂ target:

$$\left(\frac{d\sigma}{dM_{ee}}\right)_{CH_2} = \left(\frac{d\sigma}{dM_{ee}}\right)_C + 2\left(\frac{d\sigma}{dM_{ee}}\right)_H$$

Bolzmann–Ühling–Uhlenbeck transport equation. Exemplary introductions:

```
B.Serot, J.Walecka, arXiv:nucl/th/9701058 section 7A
C.Hartnack et al., Eur. Phys. J. A 1, 151 (1998)
```

 <u>Outline</u>. We consider N particles moving in the phase space (x³, p³). Their distribution is described by the function f(r, p, t). Particles are in a field described by a potential U (mean field; it's the BUU's feature)

 $N = \int d^{3}\mathbf{r} \int d^{3}\mathbf{p} f(\mathbf{r}, \mathbf{p}, t)$ $df \equiv \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial r_{i}} dr_{i} + \frac{\partial f}{\partial p_{i}} dp_{i}$ $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} + \nabla_{\mathbf{r}} f \cdot \mathbf{v} - \nabla_{\mathbf{p}} f \cdot \nabla_{\mathbf{r}} U$ $\begin{cases} \frac{\partial f}{\partial r_{i}} dr_{i} = (\nabla_{\mathbf{r}} f) \cdot d\mathbf{r}_{i} \\ d\mathbf{r} = \mathbf{v} dt \\ d\mathbf{p} = -\nabla_{\mathbf{r}} U dt \end{cases}$

• Potential *U* of the mean field:

$$U = U(\rho) + U_{Coulomb} + U(\vec{p})$$

$$\downarrow$$

$$U(\rho) = \alpha \frac{\rho}{\rho_0} + \beta \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$
(nuclear matter "equation of state")

(nuclear matter "equation of state", typical parameterization)

• If *N* = *const*, we would have:

 $\frac{df}{dt} = 0$

$$U(\vec{p}) = \delta \frac{8}{\rho_0 (2\pi)^3} \int d^3 p' \frac{f(\mathbf{r}, \mathbf{p}')}{1 + \left(\frac{\mathbf{p} - \mathbf{p}'}{\Lambda}\right)^2}$$

(momentum-dependent term of potential typical parameterization)

In QMD models the objects are the particle wave packets:

 $\Psi = \prod_{i} \psi_{i} \sim \prod_{i} \exp \left[-\frac{(\boldsymbol{x}_{i} - \boldsymbol{r}_{i}(t))^{2}}{L}\right] \cdot \exp \left[i \boldsymbol{x}_{i} \boldsymbol{p}_{i}(t)\right]$

e.g. C.Hartnack et al. Eur. Phys. J. A 1, 151 (1998) arxiv.org/abs/nucl-th/9811015

Parameter L describes the packet size. It is found such that Ψ describes the density drop at the nucleus' skin.

An *i*-th particle moves in the potential ⊕ collides with neighbours.
 However, the potential is built from a sum of potentials from '*j*-th' particles surrounding the '*i*-th' one.

Quantum hamiltonian:

$$\langle H \rangle = \langle T \rangle + \langle V \rangle = \sum_{i} T_{i} + \sum_{i} \sum_{j > i} \int \psi_{i}^{*} \psi_{j}^{*} V^{ij}(x_{1}, x_{2}) \psi_{i} \psi_{j} dx_{1} dx_{2}$$
Equation of motion:

$$\begin{vmatrix} \dot{r}_{i} &= \frac{p_{i}}{m} + \nabla_{p_{i}} \sum_{j} \langle V_{ij} \rangle$$

$$\dot{p}_{i} &= -\nabla_{r_{i}} \sum_{j \neq i} \langle V_{ij} \rangle$$
(in fact, the simulation traces the centroids of wave packets)

• $N_i - N_j$ interactions: $V_{ij} = V_{ij}^{Skyrme} + V_{ij}^{Yukawa} + V_{ij}^{p-dependent} + V_{ij}^{Coulomb} + V_{ij}^{p-n}$

$$= \begin{bmatrix} t_1 + t_2 \ \rho^{\gamma-1}(\mathbf{x}_i) \end{bmatrix} \cdot \delta(\mathbf{x}_i - \mathbf{x}_j) + t_3 \frac{\exp \left[-|\mathbf{x}_i - \mathbf{x}_j|/\mu\right]}{|\mathbf{x}_i - \mathbf{x}_j|/\mu} + t_4 \ln^2 \left(1 + t_5 (p_i - p_j)^2\right) \cdot \delta(\mathbf{x}_i - \mathbf{x}_j) + \frac{Z_i Z_j e^2}{[\mathbf{x}_i - \mathbf{x}_j]} + t_6 \frac{1}{\rho_0} T_i^3 T_j^3 \cdot \delta(\mathbf{x}_i - \mathbf{x}_j)$$

• Characteristics of main properties of selected ("currently on market") transport models

Property	GiBUU	IQMD	UrQMD	RQMD.RMF	SMASH	PHSD
Relativistic Kinematics	optionally	n,p : no K : yes	yes	yes	yes	yes
Potential = Mean field	yes	n,p : no K : yes	no	optionally	yes	yes
Potential = sum of nucleon pots.	no	yes	yes	optionally	no	no
Electromagnetic potential	yes	yes	yes for baryons no for π	optionally	no	no
Momentum- dependent potential	yes	yes	no	yes	no	yes
Creation of LCP (clusters)	at end of simulation	at end of simulation	no	at end of simulation	at end of simulation	no
modifications of hadron mass in the medium	yes	yes	no	baryons: yes K, π: no	no	yes
quark-gluon phase described by "strings"	yes	no	yes	yes	yes	yes

Bonn-Gatchina Partial Wave Analysis

Address: Nussallee 14-16, D-53115 Bonn Fax: 228 / 73-2505

Data Base

Meson Spectroscopy

Baryon Spectroscopy

NN-interaction

Formalism

Data: 2016-2018 130 datasets solutions: A. Sarantsev

Petersbur

Nuclear Physics Institute

 $A = \sum_{IJ\xi,\alpha} \bar{u}(q_1) A^{IJ\xi,\alpha}_{\gamma_1\dots\gamma_n} F^{\gamma_1\dots\gamma_n}_{\mu_1\dots\mu_n}(p) N^{\xi}_{\mu_1\dots\mu_n}(k^{\perp}) u(k_1)$

2π data included in the fit

	avant by avant		Reaction	Observable	W (GeV)	
	event-by-event		$\gamma p ightarrow \pi^0 \pi^0 p$	DCS, Tot	1.2-1.9	MAMI
cros	ss sec. calculated f	or	$\gamma p ightarrow \pi^0 \pi^0 p$	E	1.2-1.9	MAMI
eve	ry fitted data event	t	$\gamma p o \pi^0 \pi^0 p$	DCS,Tot	1.4 - 2.38	CB-ELSA
	\		$\gamma p ightarrow \pi^0 \pi^0 p$	P, H	1.45-1.65	CB-ELSA
			$\gamma p o \pi^0 \pi^0 p$	T, P_x, P_y	1.45 - 2.28	CB-ELSA
$N(data) = \sigma \cdot (PWA) data$			$\gamma p o \pi^0 \pi^0 p$	P_x, P_x^c, P_x^s (4D)	1.45-1.8	CB-ELSA
$f = -\sum_{j} ln \frac{\sigma_{j}(IWA)}{\sum_{m} \sigma_{m}(PWA)}$		$\gamma p o \pi^0 \pi^0 p$	$P_{y}, P_{y}^{c}, P_{y}^{s}$ (4D)	1.45-1.8	CB-ELSA	
	(A)	$\gamma p ightarrow \pi^+\pi^- p$	DCS	1.7 - 2.3	CLAS	
)	$\gamma p ightarrow \pi^+\pi^- p$	I^c, I^s	1.74 - 2.08	CLAS	
	-	$\pi^- p o \pi^0 \pi^0 n$	DCS	1.29 - 1.55	Crystal Ball	
unique data sets			$\pi^- p \to \pi^+ \pi^- n$	DCS	1.45-1.55	HADES
		a sets	$\pi^- p o \pi^0 \pi^- p$	DCS	1.45 - 1.55	HADES

Bonn-Gatchina PWA

HADES: Phys. Rev. C 102, 024001, (2020)

Amplitude: from πN to meson-N

$$\pi \rightarrow A \qquad N \qquad N \qquad N \qquad P \qquad S-channel \qquad \pi \qquad \rho \qquad \sigma$$

$$A = \sum_{IJ\xi,\alpha} \bar{u}(q_1) A^{IJ\xi,\alpha}_{\gamma_1\dots\gamma_n} F^{\gamma_1\dots\gamma_n}_{\mu_1\dots\mu_n}(p) N^{\xi}_{\mu_1\dots\mu_n}(k^{\perp}) u(k_1)$$

- F- tensor propagator of the initial system (πN)
- N- production vertex

TABLE I. The reactions, observables, and energy ranges of the two-pion production data used in the PWA. $d\sigma/d\Omega$ and σ_{tot} refer to the differential and total photoproduction cross section, respectively, while the other observables (*E*, *P*, *H*, *T*) are defined in Ref. [55].

Reaction	Observable	W (GeV)	Experiment
$\gamma p \to \pi^0 \pi^0 p$	$d\sigma/d\Omega, \sigma_{ m tot}$	1.2-1.9	MAMI
$\gamma p \to \pi^0 \pi^0 p$	Ε	1.2–1.9	[56] MAMI [56]
$\gamma p \to \pi^0 \pi^0 p$	$d\sigma/d\Omega,\sigma_{ m tot}$	1.4-2.38	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	Р, Н	1.45-1.65	[57,58] CB-ELSA [59,60]
$\gamma p \to \pi^0 \pi^0 p$	T, P_x, P_y	1.45-2.28	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	P_x, P_x^c, P_x^s (4D)	1.45-1.8	[59,60] CB-ELSA [59,60]
$\gamma p \to \pi^0 \pi^0 p$	P_y, P_y^c, P_y^s (4D)	1.45-1.8	CB-ELSA [59,60]
$\pi^- p \to \pi^0 \pi^0 n$	$d\sigma/d\Omega$	1.29–1.55	Crystal Ball
$\pi^- p \rightarrow \pi^+ \pi^- n$	$d\sigma/d\Omega$	1.45-1.55	HADES
$\pi^- p \to \pi^0 \pi^- p$	$d\sigma/d\Omega$	1.45–1.55	(this work) HADES (this work)

 → coherent sum of I=1/2 and I=3/2
 → two kinds of separation after fit: into initial (J^P=1/2^{+/-}, 3/2^{+/-}, L=0,1,2) and final states

 π^{-}

 l_i

р

N(mass)L_{2I,2J} N(1535)1/2⁻ N(1440)1/2⁺ N(1520)3/2⁻

Structure of Baryon Transitions Lagrangian Model

E. Speranza et al. Phys. Lett. B764, 282 (2017)

 $\pi N \rightarrow Ne^+e^-$ spin density matrix elements (SDME) information on photon polarization

$$\frac{d^{3}\sigma}{dM_{ee}d\Omega_{\gamma_{*}}d\Omega_{e}} \sim |\mathsf{A}|^{2} = \frac{e^{2}}{Q^{4}} \sum_{\Lambda\Lambda'} \rho_{\Lambda\Lambda'}^{(H)} \rho_{\Lambda\Lambda'}^{(dec)} \quad \text{QED: } \gamma^{*} \to e^{+e^{-1}}$$

hadron decay to γ^{*}

 $\frac{|A|^2}{\sigma} = \frac{1}{N} \left(8m_e^2 + 8|\mathbf{k}|^2 \left[1 - \tilde{\rho}_{11}^{(H)} + \cos^2\theta (3\tilde{\rho}_{11}^{(H)} - 1) + \sqrt{2}\sin(2\theta)\cos\phi\operatorname{Re}\tilde{\rho}_{10}^{(H)} + \sin^2\theta\cos(2\phi)\operatorname{Re}\tilde{\rho}_{1-1}^{(H)} \right] \right)$

SDME ρ_{11} , ρ_{10} , ρ_{1-1} extracted taking into account acceptance and efficiency (A. Sarantsev) in 3 bins in $\cos\theta\gamma$

SDME sensitive to:

- resonance J^{P} (for s=1/2 no dependence on $\theta\gamma$)
- $\rho_{11}=0.5$, $\rho_{10}=0$ for transverse polarization (real photon)
- angular dependence \rightarrow contributions of spins larger than $\frac{1}{2}$: N(1520) resonance
- more precise data needed

$\Gamma(N(1520) ightarrow \Delta(1232))$	2) π , $S{-wave})/\Gamma_{ m total}$
VALUE (%)	DOCUMENT ID
12.1 ± 2.1	ADAMCZEWSKI- 2020
$\Gamma(\mathit{N}(1520) ightarrow \mathit{\Delta}(1232))$	$(D)\pi$, $D{-}wave)/\Gamma_{ m total}$
VALUE (%)	DOCUMENT ID
6 ± 2	ADAMCZEWSKI- 2020
$\Gamma(\ N(1520) o N ho$, $S=$ VALUE (%)	3/2 , $S{-wave})/\Gamma_{ m total}$
11.8 ±1.9	ADAMCZEWSKI- 2020
$\Gamma(\ {\it N}(1520) o {\it N} ho$, $S=$	1/2 , $D{-}wave)/\Gamma_{ m total}$
VALUE (%)	DOCUMENT ID
0.4 ± 0.2	ADAMCZEWSKI- 2020
$\Gamma(\ N(1520) o N\sigma\)/\Gamma$	total
VALUE (%)	DOCUMENT ID
7 ± 3	ADAMCZEWSKI- 2020

ρN coupling not present in PDG since 2016

$\Gamma(N(1535) ightarrow \Delta(1232) \pi$, $D{-}wave)/\Gamma_{ m total}$		
VALUE (%)	DOCUMENT ID	
3 ± 1	ADAMCZEWSKI- 2020	

$\Gamma(N(1535) \rightarrow N ho$, S	$= 1/2)/\Gamma_{ m total}$	
VALUE (%)	DOCUMENT ID	

VILUE (VV)	DOODINEITTID
2.7 ± 0.6	ADAMCZEWSKI- 2020

$\Gamma(\mathit{N}(1535) ightarrow \mathit{N} ho$, S=3/2 , $D{-}wave)/\Gamma_{ ext{total}}$		
VALUE (%)	DOCUMENT ID	
0.5 ± 0.5	ADAMCZEWSKI- 2020	