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In classical mechanics, the components of angular momentum  take 
continuous real numbers. 

A striking fact, found in the Stern-Gerlach experiment, is that the measurement 
outcome of spin component is either  or  (in the  unit).
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α (spin 1/2) β (spin 1/2)

δ (spin 0)Alice Bob

• Alice and Bob receive particles α and β, respectively, and measure the spin z-
component of their particles.  Repeat the process many times.


• Alice and Bob will find their results are completely random (+1 and -1 50-50%)


• Nevertheless, their result is 100% anti-correlated due to the angular momentum 
conservation.  If Alice’s result is +1, Bon’s result is always -1 and vice versa.
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The most natural explanation would be as follows:

- Since their result is sometimes +1 and sometimes -1, it is natural to think that the state 
of α and β are different in each decay.  The result look random, since we don’t know in 
which sate the α and β particles are in each decay.

- This means we can parametrise the state of α and β by a set of unknown (hidden) 
variables, .  For i-th decay, their states are: λ

α(λi), β(λi)
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If 　λi ∈ {λ+−} ⟹ Sz[α(λi)] = + 1, Sz[β(λi)] = − 1

If 　λi ∈ {λ−+} ⟹ Sz[α(λi)] = − 1, Sz[β(λi)] = + 1

P(λ ∈ {λ+−}) = P(λ ∈ {λ−+}) =
1
2

- Particles have definite properties regardless of the measurement (realism) 

- Alice’s measurement has no influence on Bob’s particle (locality)

In this explanation:



• Before the measurements, particles have no definite spin. Outcomes are undetermined. 

The explanation in QM is very different.  

Although their outcomes are different in each decay, QM says the state of the particles 
are exactly the same for all decays:     

(no realism)
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up to a phase eiθ
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| + − ⟩z − | − + ⟩z

2



• At the moment when Alice makes her measurement, the state collapses into:

 Alice finds ⋯ Sz[α] = + 1
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measurement

• Before the measurements, particles have no definite spin. Outcomes are undetermined. 

The explanation in QM is very different.  

Although their outcomes are different in each decay, QM says the state of the particles 
are exactly the same for all decays:     

(no realism)
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• At the moment when Alice makes her measurement, the state collapses into:

 Alice finds ⋯ Sz[α] = + 1
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Bob’s outcome is completely determined (before his measurement) 
and 100% anti-correlated with Alice’s 

Alice’s 

measurement

• Before the measurements, particles have no definite spin. Outcomes are undetermined. 
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The explanation in QM is very different.  

Although their outcomes are different in each decay, QM says the state of the particles 
are exactly the same for all decays:     

(no realism)

(non-local)



The origin of this bizarre feature is entanglement. 
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The origin of this bizarre feature is entanglement. 
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Einstein, Podolsky and Rosen (EPR) did not like the QM explanation.

EPR’s local-real requirement:

• Physical observables must be real:  they have definite values irrespectively with the 
measurement.  

• Physical observables must be local:  an action in one place cannot influence a 
physical observable in a space-like separated region. 

QM violates both local and real requirements

EPR paradox

[Einstein, Podolsky, Rosen 1935]



Einstein, Podolsky and Rosen (EPR) did not like the QM explanation.

QM violates both local and real requirements

It seems difficult to experimentally discriminate QM and general hidden variable theories.

John Bell (1964) derived simple inequalities that can 
discriminate QM from any local-real hidden variable 
theories:  Bell inequalities

EPR paradox

EPR’s local-real requirement:

• Physical observables must be real:  they have definite values irrespectively with the 
measurement.  

• Physical observables must be local:  an action in one place cannot influence a 
physical observable in a space-like separated region. 

[Einstein, Podolsky, Rosen 1935]
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Finally, we construct 
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One can show in hidden variable theories: [Clauser, Horne, 
Shimony, Holt, 1969]

4 Bell’s inequality

One can derive an interesting inequality that must be held for hidden variable theories. Let’s consider
the following experiments:

1. Choose four unit vectors, ~a, ~a0, ~b and ~b0. We denote the spin component in the ~a direction by
sa, and so on.

2. Prepare a lot of e-ē pairs coming from decays of the spin 0 particles.

3. We divide the sample into four subsamples, (i), (ii), (iii), (iv).

4. In the subsample (i), Alice measures sa and Bob measures sb.

5. In the subsample (ii), Alice measures sa and Bob measures sb0 .

6. In the subsample (iii), Alice measures sa0 and Bob measures sb.

7. In the subsample (iv), Alice measures sa0 and Bob measures sb0 .

In hidden variable theories, each e-ē pair in a sample is described by a set of variables �. In the
i-th pair in a sample, Alice’s outcome of her sa measurement is a(�i) and Bob’s outcome of his sb

measurement is b(�i). If sa and sb are the same spin component, we have a(�i) = �b(�i), but this is
not satisfied in the general case with sa 6= sb.

Bell’s inequality considers the average of the product of Alice and Bob’s measurement outcomes.
For example, for the subset (i), we denote the average of ab by habi. In hidden variable theories this
can be calculated as

habi =
1

N

NX

i=1

a(�i)b(�i) , (4.5)

where N is the number of e-ē pairs in the subset (i). If we know the probability density, P (�), the
same average can be computed as

habi =

Z
a(�)b(�)P (�)d� . (4.6)

Since P (�) is a probability density, we have
Z

P (�)d� = 1 . (4.7)

Derivation of Bell’s inequality

Let’s consider the quantity

|habi � hab0i| =

����
Z

d� (ab � ab
0)P

���� , (4.8)

where we suppressed � in the RHS. Here we made an implicit assumption that the probability density
P (�) is common for the subsamples (i) and (ii). In the next step we will assume P (�) is common for
the all subsamples. By adding ± aba

0
b
0
P � (± aba

0
b
0
P ) = 0 to the RHS, we have

|habi � hab0i| =

Z
d� |ab(1 ± a

0
b
0)P � ab

0(1 ± a
0
b)P | ,


Z

d�

⇣
|ab||1 ± a

0
b
0|P + |ab0||1 ± a

0
b|P

⌘
. (4.9)
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The inequality holds since we made each term in the integral positive. Since the measurement outcomes
a, b, a0 and b

0 can take only +1 or �1, always |ab| = |ab0| = 1 and |1�a
0
b
0| and |1�a

0
b| are non-negative.

Therefore, we have

|habi � hab0i| 
Z

d�

h
(1 ± a

0
b
0)P + (1 ± a

0
b)P

i
,

= 2 ± (ha0b0i + ha0bi), (4.10)

where we have used Eqs. (4.6) and (4.7). Equivalently we have

eQCHSH ⌘ |habi � hab0i| + |ha0bi + ha0b0i|  2 (4.11)

This is the statement that for any choice of {~v} = (~a, ~a0,~b, ~b0) the LHS is bounded by 2. In fact,
however, for

QCHSH ⌘ |habi � hab0i + ha0bi + ha0b0i| (4.12)

we can show
max
~a,~a0,~b,~b0

(QCHSH) = max
~a,~a0,~b,~b0

⇣
eQCHSH

⌘
. (4.13)

This is because QCHSH and eQCHSH are di↵erent only when the relative sign between the first and second
terms in eQCHSH are di↵erent, i.e. sign(habi � hab0i) = �sign(hab0i + ha0b0i). If this happens, however,
one can swap ~b and ~b0 and make the relative sign positive. Namely, for any choice of {~v} = (~a, ~a0,~b, ~b0),
there is a choice {~v⇤} that satisfies eQCHSH({~v}) = QCHSH({~v⇤}), where either ~v = ~v

⇤ or ~v and ~v
⇤ di↵er

for ~b $ ~b0. In summary, without loss of generality, we can rewrite Eq. (4.11) as

QCHSH = |habi � hab0i + ha0bi + ha0b0i|  2 . (4.14)

This is called CHSH inequality, which is a part of the general Bell’s inequalities. This inequality
must be satisfied if the outcomes of Alice and Bob’s measurements are predetermined prior to their
measurements and can be written as a(�) and b(�), respectively.

5 Violation of Bell’s inequality in QM

5.1 Case of the EPR state

One can show the CHSH inequality is violated in QM. Let’s consider the EPR sate in Eq. (2.2). The
average habi is computed in QM as

habi = h |ŝaŝb| i (5.15)

with | i .
= |"bi|#bi�|#bi|"bip

2
. By some straightforward calculation one can show

habi = �(~a ·~b) (5.16)

Therefore if we take the four unit vectors as

~a = " ~b =%
~a0 =! ~b0 =& ,

(5.17)

we have habi = �hab0i = ha0bi = ha0b0i = � 1p
2
and

QCHSH = 2
p
2 , (5.18)

which exhibits violation of the CHSH inequality.
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2. Prepare a lot of e-ē pairs coming from decays of the spin 0 particles.

3. We divide the sample into four subsamples, (i), (ii), (iii), (iv).

4. In the subsample (i), Alice measures sa and Bob measures sb.

5. In the subsample (ii), Alice measures sa and Bob measures sb0 .

6. In the subsample (iii), Alice measures sa0 and Bob measures sb.

7. In the subsample (iv), Alice measures sa0 and Bob measures sb0 .
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2|ab | = |ab′￼| = 1

|1 ± a′￼b′￼| , |1 ± a′￼b | ≥ 0

<latexit sha1_base64="qp69cAXOCCfYAWC+lPjSBgEE4/4="></latexit>

R̃CHSH =
1

2
(|habi � hab0i|+ |ha0bi+ ha0b0i|)  1
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⇣
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⌘
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In QM, for |Ψ(0,0)⟩ ≐
| + − ⟩z − | − + ⟩z

2

⟨sasb⟩ = ⟨Ψ(0,0) |sasb |Ψ(0,0)⟩ = (â ⋅ b̂)

one can show 

therefore

RCHSH =
1
2

⟨sasb⟩ − ⟨sasb′￼⟩ + ⟨sa′￼sb⟩ + ⟨sa′￼sb′￼⟩

=
1
2

(â ⋅ b̂) − (â ⋅ b̂′￼) + (â′￼⋅ b̂) + (â′￼⋅ b̂′￼)



In QM, for 

one can show 

therefore

RCHSH =
1
2

⟨sasb⟩ − ⟨sasb′￼⟩ + ⟨sa′￼sb⟩ + ⟨sa′￼sb′￼⟩

<latexit sha1_base64="C9jvN9JHHloa38GenkbH86MhhHQ="></latexit> { <latexit sha1_base64="C9jvN9JHHloa38GenkbH86MhhHQ="></latexit> { <latexit sha1_base64="C9jvN9JHHloa38GenkbH86MhhHQ="></latexit> { <latexit sha1_base64="C9jvN9JHHloa38GenkbH86MhhHQ="></latexit> {

<latexit sha1_base64="UZuOnftZeLxgXRL4LsRxFZfwrqY=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQtlsN+3SzSbubsQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8IOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3Mz87iOVisXiXk8T6kd4JFjICNZGGthVL5SYZG6eeepB6qyR5wO75tSdOdAqcQtSgwKtgf3lDWOSRlRowrFSfddJtJ9hqRnhNK94qaIJJhM8on1DBY6o8rP57Tk6NcoQhbE0JTSaq78nMhwpNY0C0xlhPVbL3kz8z+unOrzyMyaSVFNBFovClCMdo1kQaMgkJZpPDcFEMnMrImNswtAmrooJwV1+eZV0GnX3ou7endea10UcZTiGEzgDFy6hCbfQgjYQeIJneIU3K7derHfrY9FasoqZI/gD6/MHmCeUzg==</latexit>

1p
2

<latexit sha1_base64="DolGNS25nHJxTgvxUEiaFRV9kX0=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0tSRF0W3bisYB/QlDKZTtqhk0mcuRFqCP6KGxeKuPU/3Pk3TtsstPXAhcM593LvPX4suAbH+bYKS8srq2vF9dLG5tb2jr2719RRoihr0EhEqu0TzQSXrAEcBGvHipHQF6zlj64nfuuBKc0jeQfjmHVDMpA84JSAkXr2wSn2AkVo6mapp+8VpNUs69llp+JMgReJm5MyylHv2V9eP6JJyCRQQbTuuE4M3ZQo4FSwrOQlmsWEjsiAdQyVJGS6m06vz/CxUfo4iJQpCXiq/p5ISaj1OPRNZ0hgqOe9ifif10kguOymXMYJMElni4JEYIjwJArc54pREGNDCFXc3IrpkJgwwARWMiG48y8vkma14p5X3Nuzcu0qj6OIDtEROkEuukA1dIPqqIEoekTP6BW9WU/Wi/VufcxaC1Y+s4/+wPr8AVzNlS8=</latexit>

� 1p
2

<latexit sha1_base64="UZuOnftZeLxgXRL4LsRxFZfwrqY=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQtlsN+3SzSbubsQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8IOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3Mz87iOVisXiXk8T6kd4JFjICNZGGthVL5SYZG6eeepB6qyR5wO75tSdOdAqcQtSgwKtgf3lDWOSRlRowrFSfddJtJ9hqRnhNK94qaIJJhM8on1DBY6o8rP57Tk6NcoQhbE0JTSaq78nMhwpNY0C0xlhPVbL3kz8z+unOrzyMyaSVFNBFovClCMdo1kQaMgkJZpPDcFEMnMrImNswtAmrooJwV1+eZV0GnX3ou7endea10UcZTiGEzgDFy6hCbfQgjYQeIJneIU3K7derHfrY9FasoqZI/gD6/MHmCeUzg==</latexit>

1p
2

<latexit sha1_base64="UZuOnftZeLxgXRL4LsRxFZfwrqY=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQtlsN+3SzSbubsQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8IOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3Mz87iOVisXiXk8T6kd4JFjICNZGGthVL5SYZG6eeepB6qyR5wO75tSdOdAqcQtSgwKtgf3lDWOSRlRowrFSfddJtJ9hqRnhNK94qaIJJhM8on1DBY6o8rP57Tk6NcoQhbE0JTSaq78nMhwpNY0C0xlhPVbL3kz8z+unOrzyMyaSVFNBFovClCMdo1kQaMgkJZpPDcFEMnMrImNswtAmrooJwV1+eZV0GnX3ou7endea10UcZTiGEzgDFy6hCbfQgjYQeIJneIU3K7derHfrY9FasoqZI/gD6/MHmCeUzg==</latexit>

1p
2

<latexit sha1_base64="wHD9OcDybBGQLhxIJPQS2lbIlw8=">AAAB8XicdVDLSgNBEOz1GeMr6tHLYBA8hdlFYnIQgl48RjAPTJYwO5lNhszOrjOzQljyF148KOLVv/Hm3zh5CCpa0FBUddPdFSSCa4Pxh7O0vLK6tp7byG9ube/sFvb2mzpOFWUNGotYtQOimeCSNQw3grUTxUgUCNYKRpdTv3XPlOaxvDHjhPkRGUgeckqMlW7PUVffKZN5k16hiEvYolxGU+JWsGtJtVrxvCpyZxbGRVig3iu8d/sxTSMmDRVE646LE+NnRBlOBZvku6lmCaEjMmAdSyWJmPaz2cUTdGyVPgpjZUsaNFO/T2Qk0nocBbYzImaof3tT8S+vk5qw4mdcJqlhks4XhalAJkbT91GfK0aNGFtCqOL2VkSHRBFqbEh5G8LXp+h/0vRKbrnkXp8WaxeLOHJwCEdwAi6cQQ2uoA4NoCDhAZ7g2dHOo/PivM5bl5zFzAH8gPP2CXdbkM4=</latexit>

=
p
2

violates the upper 
bound of hidden 
variable theories!

â

â′￼

b̂

b̂′￼

=
1
2

(â ⋅ b̂) − (â ⋅ b̂′￼) + (â′￼⋅ b̂) + (â′￼⋅ b̂′￼)

⟨sasb⟩ = ⟨Ψ(0,0) |sasb |Ψ(0,0)⟩ = (â ⋅ b̂)

|Ψ(0,0)⟩ ≐
| + − ⟩z − | − + ⟩z

2
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(QM)
BI violation
RCHSH ≥ 1

separable

|Ψsep⟩

entangled |Ψent⟩
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(HV theories)

(QM)
BI violation
RCHSH ≥ 1

separable

|Ψsep⟩

entangled |Ψent⟩

✤ Violation of Bell inequalities has been observed in low energy experiments: 



BI violation
RCHSH ≥ 1

separable

|Ψsep⟩

entangled |Ψent⟩

- Entangled photon pairs (from decays of Calcium atoms)
Crauser, Horne, Shimony, Holt (1969), Freedman and Clauser (1972), A. Aspect 
et. al. (1981, 1982), Y. H. Shih, C. O. Alley (1988), L. K. Shalm et al. (2015) [5σ]

- Entangled proton pairs (from decays of 2He)
M. M. Lamehi-Rachti, W. Mitting (1972), H. Sakai (2006)

-  flavour oscillationK0K0, B0B0 CPLEAR (1999), Belle (2004, 2007) 

RCHSH ≤
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(HV theories)

(QM)

✤ Violation of Bell inequalities has been observed in low energy experiments: 



Can we test Bell inequality and entanglement at high energy colliders?

Bell inequality and entanglement have not been tested at high energy regime E ~ TeV

- Entanglement in  @ LHCpp → tt̄

- Bell inequality test in  @ LHCH → WW*

- Bell inequality test in  @ LHCpp → tt̄

Y. Afik, J. R. M. de Nova (2020)

M. Fabbrichesi, R. Floreanini, G. Panizzo (2021)

C. Severi, C. D. Boschi, F. Maltoni, M. Sioli (2021)

J. A. Aguilar-Saavedra, J. A. Casas (2022)


A. J. Barr (2021)

- Quantum property test in  @ high energy  collidersH → τ+τ− e+e− this talk



5.2 Case for general quantum sates

5.2.1 The density operator

Let’s consider a situation where we have a quantum state | ki with probability pk. In this case, we
can describe the system with the density operator defined by

⇢̂ ⌘
X

k

pk| kih k| (5.19)

with
0  pk  1,

X

k

pk = 1 , (5.20)

since pk is probability. Using an orthonormal basis, {|e↵i}, with he↵|e�i = �↵� and
P

↵
|e↵ihe↵| = 1,

one can give a matrix representation (density matrix)

⇢↵� ⌘ he↵|⇢̂|e�i . (5.21)

The density operator (matrix) satisfies the following properties:

• ⇢̂
† = ⇢̂

• Tr ⇢̂ = 1

• ⇢̂ is positive definite, that is 8|'i; h'|⇢̂|'i � 0.

The second property holds since

Tr ⇢̂ ⌘
X

i

he↵|⇢̂|e↵i =
X

↵,k

pkh k|e↵ihe↵| ki =
X

k

pk = 1 . (5.22)

Conversely, if one finds an operator satisfying the above three properties, there exists a corresponding
quantum state associated with it. Using the density operator, the expectation value of an observable,
Â, can be calculated as

hÂi = Tr
h
Â⇢̂

i
(5.23)

since the RHS is
X

↵,k

pkhe↵|Â| kih k|e↵i =
X

↵,k

pkh k|e↵ihe↵|Â| ki =
X

k

pkh k|Â| ki . (5.24)

As an example, let’s consider the EPR singlet state (s, sz) = (0, 0), | (0,0)

EPR
i .
= |"zi|#zi�|#zi|"zip

2
. By taking

the orthogonal basis as

(|e1i, |e2i, |e3i, |e4i) = (| "z"zi, | "z#zi, | #z"zi, | #z#zi) (5.25)

we have

⇢̂
EPR,(0,0) =

1

2
(|e2i � |e3i) (he2| � he3|)

=
1

2
(|e2ihe2| + |e3ihe3|) � 1

2
(|e2ihe3| + |e3ihe2|) (5.26)

and

⇢
EPR,(0,0)

↵�
= he↵|⇢̂EPR,(0,0)|e�i =

0

B@

0 0 0 0
0 1

2
�1

2
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1
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0 0 0 0

1

CA . (5.27)

4

• For a statistical ensemble , we define the 
density operator/matrix  

{{p1 : |Ψ1⟩}, {p2 : |Ψ2⟩}, {p3 : |Ψ3⟩}, ⋯}

probability of having |Ψ1⟩
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Let’s consider a situation where we have a quantum state | ki with probability pk. In this case, we
can describe the system with the density operator defined by
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X
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with
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(|e1i, |e2i, |e3i, |e4i) = (| "z"zi, | "z#zi, | #z"zi, | #z#zi) (5.25)

we have

⇢̂
EPR,(0,0) =

1

2
(|e2i � |e3i) (he2| � he3|)

=
1

2
(|e2ihe2| + |e3ihe3|) � 1

2
(|e2ihe3| + |e3ihe2|) (5.26)

and

⇢
EPR,(0,0)

↵�
= he↵|⇢̂EPR,(0,0)|e�i =

0
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hea|ebi = �ab

5.2 Case for general quantum sates

5.2.1 The density operator

Let’s consider a situation where we have a quantum state | ki with probability pk. In this case, we
can describe the system with the density operator defined by

⇢̂ ⌘
X

k

pk| kih k| (5.19)

with
0  pk  1,

X

k

pk = 1 , (5.20)

since pk is probability. Using an orthonormal basis, {|e↵i}, with he↵|e�i = �↵� and
P

↵
|e↵ihe↵| = 1,

one can give a matrix representation (density matrix)

⇢↵� ⌘ he↵|⇢̂|e�i . (5.21)

The density operator (matrix) satisfies the following properties:

• ⇢̂
† = ⇢̂

• Tr ⇢̂ = 1

• ⇢̂ is positive definite, that is 8|'i; h'|⇢̂|'i � 0.

The second property holds since

Tr ⇢̂ ⌘
X

i

he↵|⇢̂|e↵i =
X

↵,k

pkh k|e↵ihe↵| ki =
X

k

pk = 1 . (5.22)

Conversely, if one finds an operator satisfying the above three properties, there exists a corresponding
quantum state associated with it. Using the density operator, the expectation value of an observable,
Â, can be calculated as

hÂi = Tr
h
Â⇢̂

i
(5.23)

since the RHS is
X

↵,k

pkhe↵|Â| kih k|e↵i =
X

↵,k

pkh k|e↵ihe↵|Â| ki =
X

k

pkh k|Â| ki . (5.24)
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• Density matrices satisfy the conditions:

• The expectation of an observable  is calculated by Ô

⟨Ô⟩ = Tr [Ô ̂ρ]

Density operator 



• The spin system of  and  particles has 4 independent bases:α β

• ==>  is a 4 x 4 matrix (hermitian, Tr=1).  It can be expanded as  ρab

5.2.2 Two spin
1

2
system

The density operator for two spin 1

2
systems is given by a 4 ⇥ 4 matrix with the three properties

mentioned in section 5.2.1. Any Hermitian, trace one matrices can be expanded using Pauli matrices
as

⇢ =
1

4

�
1 ⌦ 1 + Bi · �i ⌦ 1 + Bi · 1 ⌦ �i + Cij · �i ⌦ �j

�
, (5.28)

where i, j run from 1 to 3 and are summed. For the ⇢ to be Hermitian, the coe�cients Bi, Bi and
Cij must be real. In the basis Eq. (5.25), one can represent ⇢ as

⇢ =
1

4

0

@
1 + B3 +B3 + C33 (B1 + C31) � i(B2 + C32) (B1 + C13) � i(B2 + C23) (C11 � C22) � i(C12 + C21)

(B1 + C31) + i(B2 + C32) 1 +B3 � B3 � C33 (C11 + C22) + i(C12 � C21) (B1 � C13) � i(B2 � C23)
(B1 + C13) + i(B2 + C23) (C11 + C22) � i(C12 � C21) 1 � B3 +B3 � C33 (B1 � C31) � i(B2 � C32)
(C11 � C22) + i(C12 + C21) (B1 � C13) + i(B2 � C23) (B1 � C31) + i(B2 � C32) 1 � B3 � B3 + C33

1

A . (5.29)

Finding the constraints from positivity is quite non-trivial. At least, all diagonal elements of this
matrix must be non-negative.

The spin operators of particle e and ē can be represented as

(se)i = �i ⌦ 1, (sē)i = 1 ⌦ �i . (5.30)

Using Tr(�i�j) = 2�ij and Tr(�i) = 0, one can readily find

h(se)ii = Tr((se)i⇢) = Bi

h(sē)ii = Tr((sē)i⇢) = Bi

h(se)i(sē)ji = Tr((se)i(sē)j⇢) = Cij (5.31)

This gives us a nice interpretation of the coe�cients. The Bi, Bj and Cij give the expectation values
of the spin component measurements of (se)i, (sē)j and (se)i(sē)j. Here, i, j = (1, 2, 3) are the three
orthogonal space directions, in which the spins are quantized.

Exercise with the EPR singlet state

For the EPR singlet state, | (0,0)

EPR
i .
= |"#i�|#"ip

2
, one can find

Bi = h (0,0)

EPR
|(se)i| (0,0)

EPR
i = 0,

Bi = h (0,0)

EPR
|(sē)i| (0,0)

EPR
i = 0,

Cij = h (0,0)

EPR
|(se)i(sē)j| (0,0)

EPR
i = 0, (i 6= j)

Cii = h (0,0)

EPR
|(se)i(sē)i| (0,0)

EPR
i = �1 . (5.32)

Plugging this into Eq. (5.28) one can reproduce the result in Eq. (5.27).

5.2.3 CHSH inequality in general case

The CHSH inequality was expressed in terms

habi = h(se)a(sē)bi = aibjh(se)i(sē)ji = aiCijbj (5.33)

where we have used Eq. (5.31), and a = (a1, a2, a3) and b = (b1, b2, b3) are the unit vectors that define
Alice and Bob’s measurement axes in the first set of experiment described in section 4. With this
result, QCHSH can be written as

QCHSH = |aiCij(b � b
0)j + a

0
i
Cij(b+ b

0)j| . (5.34)
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Bi, Bi, Cij 2 R

• For the spin operators  and ,  ̂sα ̂sβ

⟨ ̂sα
i ⟩ = Tr [ ̂sα

i ̂ρ] = Bi

( |e1⟩, |e2⟩, |e3⟩, |e4⟩ ) = ( | + + ⟩, | + − ⟩, | − + ⟩, | − − ⟩ )

⟨ ̂sβ
i ⟩ = Tr [ ̂sβ

i ̂ρ] = Bi ⟨ ̂sα
i ̂sβ

j ⟩ = Tr [ ̂sα
i ̂sβ

j ̂ρ] = Cij

3 x 3 matrix

spin-spin correlation

Spin 1/2 biparticle system



H → τ+τ−

ℒint = −
mτ

vSM
κH ψ̄τ(cos δ+iγ5 sin δ) ψτ SM:   (κ, δ) = (1,0)

3

with

pQ(b|B,�) ⌘ Tr[⇢B(�)F
B
b
], (13)

where ⇢B(�) is Bob’s local state and FB
b

is Bob’s positive
operator valued measure (POVM). By definition, all Bell-
nonlocal states are steerable. Also, if states are separable,
the probability of measurement outcomes can be written
in a form of Eqs. (12) and (13). Namely, the following
hierarchy is established:

Entangled � Steerable � Bell-nonlocal . (14)

III. QUANTUM AND CP PROPERTIES OF
H ! ⌧

+
⌧
�

In H ! ⌧+⌧�, the spins of two taus form a two-qubit
system and can be used to test various quantum infor-
mation properties. We calculate the quantities intro-
duced in the previous section for the two-qubit system
in H ! ⌧+⌧�.

A general interaction between a Higgs boson and tau
leptons can be written as

L 3 � m⌧

vSM
H ̄⌧ (cos � + i�5 sin �) ⌧ , (15)

where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).

The spin density matrix for the two taus in H ! ⌧+⌧�

is given by

⇢mn,m̄n̄ =
M⇤nn̄Mmm̄

P
mm̄

|Mmm̄|2
, (16)

where

Mmm̄ = c ūm(p)(cos � + i�5 sin �)v
m̄(p̄) (17)

is the matrix element of H ! ⌧+⌧� and c = �im⌧/vSM.
Here, pµ = (mH

2
, 0, 0, pz) and p̄µ = (mH

2
, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
calculation leads to [13, 14]

⇢mn,m̄n̄ =
1

2

0

BB@

0 0 0 0
0 1 e�i2� 0
0 ei2� 1 0
0 0 0 0

1

CCA (18)

up to the term of order of m2

⌧
/m2

H
. On the

RHS, the column (mn) and row (m̄n̄) are ordered as
(+,+), (+,�), (�,+), (�,�). From this the expansion

coefficients in Eq. (1) can readily be obtained as Bi =
B̄i = 0 and

Cij =

0

@
cos 2� sin 2� 0
� sin 2� cos 2� 0

0 0 �1

1

A . (19)

The signature of entanglement (4) is calculated to be

E(�) = 2| cos 2�|+ 1 . (20)

This is greater than 1 unless � = ⇡

4
, 3⇡

4
, 5⇡

4
and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1

2⇡

Z
d⌦n

p
nTCTCn , (21)

where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.

The variable Rmax

CHSH
can be calculated immediately

from Eq. (10) as

Rmax

CHSH
=

p
2, (22)

which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
1p
2

�
|+,�i+ ei2�|�,+i

�
. (23)

In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).
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, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
calculation leads to [13, 14]

⇢mn,m̄n̄ =
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up to the term of order of m2

⌧
/m2

H
. On the

RHS, the column (mn) and row (m̄n̄) are ordered as
(+,+), (+,�), (�,+), (�,�). From this the expansion

coefficients in Eq. (1) can readily be obtained as Bi =
B̄i = 0 and

Cij =

0

@
cos 2� sin 2� 0
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The signature of entanglement (4) is calculated to be

E(�) = 2| cos 2�|+ 1 . (20)

This is greater than 1 unless � = ⇡

4
, 3⇡

4
, 5⇡

4
and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1

2⇡

Z
d⌦n

p
nTCTCn , (21)

where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.

The variable Rmax

CHSH
can be calculated immediately

from Eq. (10) as

Rmax

CHSH
=

p
2, (22)

which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
1p
2

�
|+,�i+ ei2�|�,+i

�
. (23)

In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).

ei2δ
e−i2δ

The density matrix can be computed from the matrix elements: 

Bi = Bi = 0

Cij =
cos 2δ sin 2δ 0

−sin 2δ cos 2δ 0
0 0 −1



H → τ+τ−

ℒint = −
mτ

vSM
κH ψ̄τ(cos δ+iγ5 sin δ) ψτ SM:   (κ, δ) = (1,0)

3

with

pQ(b|B,�) ⌘ Tr[⇢B(�)F
B
b
], (13)

where ⇢B(�) is Bob’s local state and FB
b

is Bob’s positive
operator valued measure (POVM). By definition, all Bell-
nonlocal states are steerable. Also, if states are separable,
the probability of measurement outcomes can be written
in a form of Eqs. (12) and (13). Namely, the following
hierarchy is established:

Entangled � Steerable � Bell-nonlocal . (14)

III. QUANTUM AND CP PROPERTIES OF
H ! ⌧

+
⌧
�

In H ! ⌧+⌧�, the spins of two taus form a two-qubit
system and can be used to test various quantum infor-
mation properties. We calculate the quantities intro-
duced in the previous section for the two-qubit system
in H ! ⌧+⌧�.

A general interaction between a Higgs boson and tau
leptons can be written as

L 3 � m⌧

vSM
H ̄⌧ (cos � + i�5 sin �) ⌧ , (15)

where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).

The spin density matrix for the two taus in H ! ⌧+⌧�

is given by

⇢mn,m̄n̄ =
M⇤nn̄Mmm̄

P
mm̄

|Mmm̄|2
, (16)

where

Mmm̄ = c ūm(p)(cos � + i�5 sin �)v
m̄(p̄) (17)

is the matrix element of H ! ⌧+⌧� and c = �im⌧/vSM.
Here, pµ = (mH

2
, 0, 0, pz) and p̄µ = (mH

2
, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
calculation leads to [13, 14]
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up to the term of order of m2
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/m2

H
. On the

RHS, the column (mn) and row (m̄n̄) are ordered as
(+,+), (+,�), (�,+), (�,�). From this the expansion

coefficients in Eq. (1) can readily be obtained as Bi =
B̄i = 0 and
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The signature of entanglement (4) is calculated to be

E(�) = 2| cos 2�|+ 1 . (20)

This is greater than 1 unless � = ⇡

4
, 3⇡

4
, 5⇡

4
and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1
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Z
d⌦n

p
nTCTCn , (21)

where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.

The variable Rmax

CHSH
can be calculated immediately

from Eq. (10) as
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p
2, (22)

which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
1p
2

�
|+,�i+ ei2�|�,+i

�
. (23)

In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).
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], (13)

where ⇢B(�) is Bob’s local state and FB
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is Bob’s positive
operator valued measure (POVM). By definition, all Bell-
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the probability of measurement outcomes can be written
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L 3 � m⌧

vSM
H ̄⌧ (cos � + i�5 sin �) ⌧ , (15)

where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).

The spin density matrix for the two taus in H ! ⌧+⌧�

is given by

⇢mn,m̄n̄ =
M⇤nn̄Mmm̄

P
mm̄

|Mmm̄|2
, (16)

where

Mmm̄ = c ūm(p)(cos � + i�5 sin �)v
m̄(p̄) (17)

is the matrix element of H ! ⌧+⌧� and c = �im⌧/vSM.
Here, pµ = (mH

2
, 0, 0, pz) and p̄µ = (mH

2
, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
calculation leads to [13, 14]
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up to the term of order of m2

⌧
/m2

H
. On the

RHS, the column (mn) and row (m̄n̄) are ordered as
(+,+), (+,�), (�,+), (�,�). From this the expansion

coefficients in Eq. (1) can readily be obtained as Bi =
B̄i = 0 and

Cij =
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The signature of entanglement (4) is calculated to be

E(�) = 2| cos 2�|+ 1 . (20)

This is greater than 1 unless � = ⇡

4
, 3⇡

4
, 5⇡

4
and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1

2⇡

Z
d⌦n

p
nTCTCn , (21)

where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.

The variable Rmax

CHSH
can be calculated immediately

from Eq. (10) as

Rmax

CHSH
=

p
2, (22)

which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
1p
2

�
|+,�i+ ei2�|�,+i

�
. (23)

In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).
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where ⇢B(�) is Bob’s local state and FB
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is Bob’s positive
operator valued measure (POVM). By definition, all Bell-
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the probability of measurement outcomes can be written
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vSM
H ̄⌧ (cos � + i�5 sin �) ⌧ , (15)

where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).

The spin density matrix for the two taus in H ! ⌧+⌧�

is given by

⇢mn,m̄n̄ =
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, (16)

where
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m̄(p̄) (17)

is the matrix element of H ! ⌧+⌧� and c = �im⌧/vSM.
Here, pµ = (mH
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2
, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
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up to the term of order of m2
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RHS, the column (mn) and row (m̄n̄) are ordered as
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The signature of entanglement (4) is calculated to be

E(�) = 2| cos 2�|+ 1 . (20)

This is greater than 1 unless � = ⇡
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, 5⇡

4
and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1
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where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.
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which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
1p
2

�
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�
. (23)

In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).

ei2δ
e−i2δ

The density matrix can be computed from the matrix elements: 

Bi = Bi = 0

Cij =
cos 2δ sin 2δ 0

−sin 2δ cos 2δ 0
0 0 −1

|ΨH→ττ(δ)⟩ ∝ | + − ⟩ + ei2δ | − + ⟩

|Ψ(1,m)⟩ ∝
| + + ⟩

| + − ⟩ + | − + ⟩
| − − ⟩

|Ψ(0,0)⟩ ∝ | + − ⟩ − | − + ⟩

δ = π /2 (CP odd)
δ = 0
(CP even)

Parity:    with :  P = (ηf ηf̄ ) ⋅ (−1)l ηf ηf̄ = − 1

 JP = {0+ ⟹ − l = s = 1
0− ⟹ l = s = 0



• If the state is separable (not entangled), 
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⇢ =
X

k

pk⇢
↵
k ⌦ ⇢�k

5.2 Case for general quantum sates

5.2.1 The density operator

Let’s consider a situation where we have a quantum state | ki with probability pk. In this case, we
can describe the system with the density operator defined by

⇢̂ ⌘
X

k

pk| kih k| (5.19)

with
0  pk  1,

X

k

pk = 1 , (5.20)

since pk is probability. Using an orthonormal basis, {|e↵i}, with he↵|e�i = �↵� and
P

↵
|e↵ihe↵| = 1,

one can give a matrix representation (density matrix)

⇢↵� ⌘ he↵|⇢̂|e�i . (5.21)

The density operator (matrix) satisfies the following properties:

• ⇢̂
† = ⇢̂

• Tr ⇢̂ = 1

• ⇢̂ is positive definite, that is 8|'i; h'|⇢̂|'i � 0.

The second property holds since

Tr ⇢̂ ⌘
X

i

he↵|⇢̂|e↵i =
X

↵,k

pkh k|e↵ihe↵| ki =
X

k

pk = 1 . (5.22)

Conversely, if one finds an operator satisfying the above three properties, there exists a corresponding
quantum state associated with it. Using the density operator, the expectation value of an observable,
Â, can be calculated as

hÂi = Tr
h
Â⇢̂

i
(5.23)

since the RHS is
X

↵,k

pkhe↵|Â| kih k|e↵i =
X

↵,k

pkh k|e↵ihe↵|Â| ki =
X

k

pkh k|Â| ki . (5.24)

As an example, let’s consider the EPR singlet state (s, sz) = (0, 0), | (0,0)

EPR
i .
= |"zi|#zi�|#zi|"zip

2
. By taking

the orthogonal basis as

(|e1i, |e2i, |e3i, |e4i) = (| "z"zi, | "z#zi, | #z"zi, | #z#zi) (5.25)

we have
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5.2 Case for general quantum sates

5.2.1 The density operator

Let’s consider a situation where we have a quantum state | ki with probability pk. In this case, we
can describe the system with the density operator defined by

⇢̂ ⌘
X

k

pk| kih k| (5.19)

with
0  pk  1,

X

k

pk = 1 , (5.20)

since pk is probability. Using an orthonormal basis, {|e↵i}, with he↵|e�i = �↵� and
P

↵
|e↵ihe↵| = 1,

one can give a matrix representation (density matrix)

⇢↵� ⌘ he↵|⇢̂|e�i . (5.21)
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• ⇢̂
† = ⇢̂
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Tr ⇢̂ ⌘
X

i

he↵|⇢̂|e↵i =
X

↵,k

pkh k|e↵ihe↵| ki =
X

k

pk = 1 . (5.22)
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Â, can be calculated as

hÂi = Tr
h
Â⇢̂

i
(5.23)
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⇢T� ⌘
X

k

pk⇢
↵
k ⌦ [⇢�k ]

T

then, a modified matrix by the partial transpose  

is also a physical density matrix,  i.e. Tr=1 and non-negative.  

Peres-Horodecki 
(1996, 1997)

• For biparticle systems, entanglement     to be non-positive.⟺ ρTβ

• A simple sufficient condition for entanglement is:

E ≡ C11 + C22 − C33 > 1

Entanglement

(E = 2 cos 2δ + 1 for H → τ+τ−)
(E = 3 (maximally entangled) for H → τ+τ− in SM)



Steering
• Steering for Alice is Alice’s ability to “steer” Bob’s local state by her measurement.

• Suppose Alice and Bob measure the observables  and , and obtained the 
outcomes  and .  The state is said to be steerable by Alice, if it is not possible to 
write this probability in a form:  

𝒜 ℬ
a b

p(a, b) = ∑
λ

p(a |λ) ⋅ pQ(b |λ) pQ(b |λ) = Tr [ ρB(λ) |b⟩⟨b |]

Bob’s local state

[Schrödinger 1935]

[Jones, Wiseman, Doherty 2007]

BI violation
RCHSH ≥ 1

separable

|Ψsep⟩

entangled

steerable



Steering
• For unpolarised cases, , a necessary and sufficient condition for 

steerability is given by:
⟨ ̂sA

i ⟩ = ⟨ ̂sB
i ⟩ = 0

[Jevtic, Hall, Anderson, Zwierz, Wiseman 2015]

𝒮[ρ] ≡
1

2π ∫ dΩn nTCTCn 𝒮[ρ] > 1

• In ,H → τ+τ−

𝒮[ρ] = 2 ( independent of  )δCij =
cos 2δ sin 2δ 0

−sin 2δ cos 2δ 0
0 0 −1

CTC = 1



• Let’s suppose a spin 1/2 particle  is at rest and spinning in the  direction.α s

•  decays into a measurable particle  and the rest  α lα X

dΓ
dΩ

∝ 1 + xα ( ̂lα ⋅ s)

• The decay distribution is generally given by

α → lα + (X)

 is a unit direction vector of , 
measured at the rest frame of 

̂lα lα
α

•  is called spin-analysing power and depends on the decay.   x ∈ [−1, 1]

   τ− → π− + (ντ) ⟹ x = 1

• One can show for  and  α + β → [lα + (X)] + [lβ + X] ξij ≡ ( ̂lα)i ( ̂lβ)j

dσ
dξij

= (1 − Cij) ⋅ ln ( 1
ξij )

Cij = 4 ⋅
N(ξij > 0) − N(ξij < 0)
N(ξij > 0) + N(ξij < 0)



=
9

2 |xαxβ | ⟨( ̂lα)a( ̂lβ)b⟩ − ⟨( ̂la)( ̂lβ)b′￼⟩ + ⟨( ̂lα)a′￼( ̂lβ)b⟩ + ⟨( ̂lα)a′￼( ̂lβ)b′￼⟩

RCHSH ≡
1
2

⟨sasb⟩ − ⟨sasb′￼⟩ + ⟨sa′￼sb⟩ + ⟨sa′￼sb′￼⟩

 can be directly calculated 


once the unit vectors  are fixed. 

RCHSH

(â, â′￼, b̂, b̂′￼)



Chapter 2. Higgs Boson

Figure 2.8

Higgs recoil mass distri-
bution in the Higgs-
strahlung process
e+e≠ æ Zh, with
(a) Z æ µ+µ≠ and
(b) Z æ e+e≠(n“).
The results are shown
for P (e+, e≠) =
(+30%, ≠80%) beam
polarization.
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of 32 MeV is obtained [74, 75]. The corresponding model independent uncertainty on the Higgs
production cross section is 2.5%. Similar results were obtained from SiD [76]. It should be emphasized
that these measurements only used the information from the leptonic decay products of the Z and
are independent of the Higgs decay mode. As such this analysis technique could be applied even if
the Higgs decayed invisibly and hence allows us to determine the absolute branching ratios including
that of invisible Higgs decays. By combining the branching ratio to ZZ with the production cross
section, which involves the same ghZZ coupling, one can determine the total width and the absolute
scale of partial widths with no need for the theoretical assumptions needed for the LHC case. We will
return to this point later.

It is worth noting that, for the µ+µ≠X channel, the width of the recoil mass peak is dominated
by the beam energy spread. In the above study Gaussian beam energy spreads of 0.28 % and 0.18 %
are assumed for the incoming electron and positron beams respectively. For ILD the detector response
leads to the broadening of the recoil mass peak from 560 MeV to 650 MeV. The contribution from
momentum resolution is therefore estimated to be 330 MeV. Although the e�ect of the detector
resolution is not negligible, the dominant contribution to the observed width arises from the incoming
beam energy spread rather than the detector response. This is no coincidence; the measurement
of mh from the µ+µ≠X recoil mass distribution was one of the benchmarks used to determine the
momentum resolution requirement for a detector at the ILC.

If there are additional Higgs fields with vacuum expectation values that contribute to the mass of
the Z, the corresponding Higgs particles will also appear in reactions e+e≠

æ ZhÕ, and their masses
can be determined in the same way.

We now turn to the determination of the spin and CP properties of the Higgs boson. The h æ ““

decay observed at the LHC rules out the possibility of spin 1 and restricts the charge conjugation C
to be positive. We have already noted that the discrete choice between the CP even and CP odd
charge assignments can be settled by the study of Higgs decay to ZZú to 4 leptons at the LHC.

The ILC o�ers an additional, orthogonal, test of these assignments. The threshold behavior
of the Zh cross section has a characteristic shape for each spin and each possible CP parity. For
spin 0, the cross section rises as — near the threshold for a CP even state and as —3 for a CP odd
state. For spin 2, for the canonical form of the coupling to the energy-momentum tensor, the rise
is also —3. If the spin is higher than 2, the cross section will grow as a higher power of —. With a
three-20 fb≠1-point threshold scan of the e+e≠

æ Zh production cross section we can separate these
possibilities as shown in Fig. 2.9 (left) [77]. The discrimination of more general forms of the coupling
is possible by the use of angular correlations in the boson decay; this is discussed in detail in [78].

At energies well above the Zh threshold, the Zh process will be dominated by longitudinal
Z production as implied by the equivalence theorem. The reaction will then behave like a scalar
pair production, showing the characteristic ≥ sin

2 ◊ dependence if the h particle’s spin is zero. The
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 @ lepton collidersH → τ+τ−

LHC ILC

• Background  is much smaller for lepton colliders


• We need to reconstruct each  rest frame to measure .  This is challenging 
at hadron colliders since partonic CoM energy is unknown for each event 

Z/γ → τ+τ−

τ ̂l
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- 6 unknowns can be constrained by 2 mass-
shell conditions and 4 energy-momentum 
conservation.
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Fig. 2: Schematic representation of the decay of a top quark
that ultimately leads to the emission of a charged lepton, in
the top rest frame.

codes spin correlations, and it is measurable.3 The differen-
tial cross section for pp! tt̄ ! `+`�bb̄nn̄ can be expressed
as [11]:

1
s

ds
dxi j

=
Ci j xi j �1

2
log

��xi j

��, (7)

where xi j ⌘ cosqi cos q̄ j, qi is the angle between the antilep-
ton momentum and the i-th axis in its parent top rest frame,
and q̄ j the angle between the lepton momentum and the j-
th axis in its parent anti-top rest frame.4 Spin is measured
fixing a suitable reference frame. An advantageous choice is
the helicity basis {k̂, r̂, n̂},
8
>>><

>>>:

k̂ = top direction

r̂ =
p̂� k̂ cosq

sinq
n̂ = k̂⇥ r̂ ,

(8)

where p̂ is the beam axis and q is the top scattering angle
in the center of mass frame, see also Figure 3. The helicity
basis is defined in terms of the top quark and also applies to
the anti-top, which moves in direction �k̂.

The amount and type of spin correlations strongly de-
pend on the production mechanism as well as the phase space
region (energy and angle) of the top quarks. Two comple-
mentary regimes are important: at threshold, i.e., when the
top quarks are slow in their rest frame, and when they are
ultra-relativistic. At threshold, gluon fusion gg ! tt̄ leads to
an entangled spin-0 state while qq̄ ! tt̄ to a spin-1 state. The
latter is subdominant at the LHC and acts as an irreducible
background [2].

It can be shown [7] that the tt̄ spin density matrix (6)
is separable (that is, not entangled) if and only if the partial

3Since Ci j ⇡ Cji, the C matrix can be made (almost) diagonal with
an appropriate choice of basis, thus reducing the system to the simple
density matrix (4).
4Relevant reference frames are identified in a two step process: boost-
ing first to the tt̄ center of mass frame, then to each top with a rotation
free boost.

Fig. 3: Schematic representation of a pp ! tt̄ event in the
center of mass frame, with the helicity basis {k̂, r̂, n̂} drawn,
together with the scattering angle q . The n̂ axis is into the
page.

transpose ( ⌦T )r , obtained by acting with the identity on
the first term of the tensor product and transposing the sec-
ond, is positive definite. As shown in [2], this implies that

��C11 +C22
���C33 > 1 (9)

is a sufficient condition for the presence of entanglement. It
generalises the Werner condition h > 1/3 to the case where
the Cii’s are not equal. The inequality (9) does not depend
on the basis, but we will use the helicity basis (8) in the
following.

At tt̄ production threshold Ckk +Crr < 0, so inequality
(9) reads:

�Ckk �Crr �Cnn > 1. (10)

The second regime corresponds to high transverse momen-
tum top quarks, i.e. when the system is characterised by
mtt̄ � mt and CMF scattering angle q ⇠ p

2 . In this case,
an entangled spin-1 state is produced as a consequence of
conservation of angular momentum regardless of production
channel. Since in this region Ckk +Crr > 0, inequality (9) is
written as:

Ckk +Crr �Cnn > 1. (11)

As for BIs, as shown in [8, 12] the maximal deviation
predicted by QM in the CHSH inequality (2) is:

max
aa0 bb0

��habi�hab
0i+ ha0bi+ ha0b0i

��= 2
p

l +l 0, (12)

where l and l 0 are the two largest eigenvalues of C
T

C. In
[3] it was argued that requiring l +l 0 > 1 provides an easy
way to test the CHSH violation. Unfortunately, we find that
the method suggested in [3] entails a rather serious bias. Es-
timating the eigenvalues of random matrices is a notoriously
hard problem [13]. Random fluctuations are more likely to
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1

2
(k̂ + ̂r),

1

2
(k̂ − ̂r))

Cij
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j > 0) − N( ̂l+

i
̂l+
j < 0)
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- Generate the SM events  with MadGraph5.(κ, δ) = (1,0)

Simulation

- We incorporate the detector effect by smearing energies of visible particles with 
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for signal/background separation is the invariant mass
of the visible decay products of two taus, mvis(⌧+⌧�).
However, due to presence of neutrinos in tau decays, the
mvis(⌧+⌧�) distributions have long tails and the signal
and background distributions therefore overlap. A usual
practice to overcome this problem is to try to reconstruct
the tau momenta by making some assumption on the neu-
trino momenta, either based on kinematics (e.g. collinear
approximation) or the knowledge of the Standard Model
(e.g. likelihood approach). However, this is not an option
here, since our aim is to measure the angular distribution
and making such assumptions defeats our purpose.

At e+e� colliders, the main production channel near
the threshold,

p
s ⇠ (mH + mZ), is e+e� ! ZH fol-

lowed by Z ! qq̄/`+`� and H ! ⌧+⌧�. The main
background is e+e� ! Z⌧+⌧�, where the pair of taus
comes from an off-shell photon. Unlike hadron colliders,
the full 4-momentum, Pµ

in
, of the initial state (e+e� pair)

is precisely known at lepton colliders. From this and the
measured Z-boson momentum, pµ

Z
= (pq/`� + pq̄/`+)

µ,
one can reconstruct the Higgs momentum as

pµ
H

= Pµ

in
� pµ

Z
(35)

in a good accuracy independently from the Higgs de-
cays. The distribution of the recoil mass, mrecoil =p

(Pin � pZ)2, therefore sharply peaks at the Higgs mass
in the signal. By selecting events that fall within an nar-
row window, |mrecoil�mH | < 5 GeV (Is 5 GeV optimal?),
one can achieve background/signal ⇠? with the signal ef-
ficiency ?%.

The second advantage of e+e� colliders over hadron
colliders is the ability of reconstructing two tau mo-
menta by solving kinematical constraints. This is possi-
ble thanks to the fact that the initial state 4-momentum,
Pµ

in
, is known in a good precision. This is important for

the C-matrix measurement and the Bell inequality test
since they are based on the angular distributions of u
and ū, which must be performed at the rest frames of
⌧� and ⌧+, respectively. Since taus are heavily boosted,
a small error on the tau momentum leads to a large er-
ror on the angular distribution when boosted to the tau
rest frame. Precise reconstruction of the tau momenta is
therefore crucial for the C-matrix measurement and Bell
inequality test.

We consider two benchmark collider scenarios labelled
by “ILC” [23] and “FCC-ee” [24]. The relevant parameters
we use in our simulation are listed in the table below:
We notice that the beam energy resolution is significantly
better for FCC-ee, which will have a significant impact on
the Bell inequality test as we will see in the next section.
We assume the e+e� beams are unpolarised for both ILC
and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

⌧� ! ⌫⌧⇡
�, ⌧+ ! ⌫̄⌧⇡

+ (36)

ILC FCC-ee
energy (GeV) 250 240

luminosity (ab�1) 3 5
resolution e

+ (%) 0.18 0.83 · 10�4

resolution e
� (%) 0.27 0.83 · 10�4

�(e+e� ! HZ) (fb) 240.1 240.3
# of signal (� · BR · L) 414 691

Table I: Parameters for benchmark lepton colliders
[23, 24].

with Br(⌧� ! ⌫⇡�) = 0.109 [25]. For these decay modes,
the spin analyzing power is maximum, ↵f,d↵f̄ ,d̄

= �1.
We generate signal events with MadGraph5_aMC@NLO [26]
at leading order with the Standard Model, i.e. (, �) =
(1, 0). The beam energies are smeared according to the
parameters in Table I. We consider only “neutrinoless” Z-
boson decay modes, Z ! xx̄ with xx̄ = qq̄, e+e�, µ+µ�.
ILC and FCC-ee are expected to produce NILC = 414.3
and NFCC = 691.0 signal events, [e+e� ! HZ, Z ! xx̄,
H ! ⌧+⌧�, ⌧± ! ⌫⇡±], respectively. We then further
multiply the efficiency, ✏ILC = 0.99 and ✏FCC = 0.99,
corresponding to the event selection, |mrecoil � mH | <
5 GeV. ? The background is negligible with this cut.
We perform 100 pseudo-experiments for each benchmark
collider and estimate the statistical uncertainties on the
measurements.

In order to take account of the energy mismeasure-
ment, we smear the energies of all visible particles in the
final state as

Etrue ! Eobs = (1 + �E · !) · Etrue (37)

with the energy resolution �E = 0.03 [23], where ! is a
random number drawn from the normal distribution.

A. Solving kinematical constraints

Due to the presence of neutrinos in Eq. (36), the mo-
menta of two taus are not measured. To perform mea-
surements of the C-matrix and R⇤

CHSH
, the momenta of

two neutrinos must be reconstructed by solving kinemat-
ical constraints. For 6 unknown momentum components,
there are two mass-shell constraints: m2

⌧
= (p⌫⌧

+ p⇡�)2

and m2

⌧
= (p⌫̄⌧

+ p⇡+)2, and four conditions from the
energy-momentum conservation: (Pin � pZ)µ = (p⌫⌧

+
p⇡� + p⌫̄⌧

+ p⇡+)µ, and events can be fully reconstructed
up to two-fold solutions: is = 1, 2 (see Appendix B for
details).

The system is first boosted to the rest from of H. For
each solution, is, we then boost the system to the mea-
sured rest frame of ⌧� and calculate the r, n, k compo-
nents of the ⇡� direction, i.e. (uis

r
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, uis

k
). The ⇡+ di-

rection, (ūis
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, ūis
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), are obtained at the measured rest

frame of ⌧+ in the same way. For the Bell inequality
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for signal/background separation is the invariant mass
of the visible decay products of two taus, mvis(⌧+⌧�).
However, due to presence of neutrinos in tau decays, the
mvis(⌧+⌧�) distributions have long tails and the signal
and background distributions therefore overlap. A usual
practice to overcome this problem is to try to reconstruct
the tau momenta by making some assumption on the neu-
trino momenta, either based on kinematics (e.g. collinear
approximation) or the knowledge of the Standard Model
(e.g. likelihood approach). However, this is not an option
here, since our aim is to measure the angular distribution
and making such assumptions defeats our purpose.

At e+e� colliders, the main production channel near
the threshold,

p
s ⇠ (mH + mZ), is e+e� ! ZH fol-

lowed by Z ! qq̄/`+`� and H ! ⌧+⌧�. The main
background is e+e� ! Z⌧+⌧�, where the pair of taus
comes from an off-shell photon. Unlike hadron colliders,
the full 4-momentum, Pµ

in
, of the initial state (e+e� pair)

is precisely known at lepton colliders. From this and the
measured Z-boson momentum, pµ

Z
= (pq/`� + pq̄/`+)

µ,
one can reconstruct the Higgs momentum as

pµ
H

= Pµ

in
� pµ

Z
(35)

in a good accuracy independently from the Higgs de-
cays. The distribution of the recoil mass, mrecoil =p

(Pin � pZ)2, therefore sharply peaks at the Higgs mass
in the signal. By selecting events that fall within an nar-
row window, |mrecoil�mH | < 5 GeV (Is 5 GeV optimal?),
one can achieve background/signal ⇠? with the signal ef-
ficiency ?%.

The second advantage of e+e� colliders over hadron
colliders is the ability of reconstructing two tau mo-
menta by solving kinematical constraints. This is possi-
ble thanks to the fact that the initial state 4-momentum,
Pµ

in
, is known in a good precision. This is important for

the C-matrix measurement and the Bell inequality test
since they are based on the angular distributions of u
and ū, which must be performed at the rest frames of
⌧� and ⌧+, respectively. Since taus are heavily boosted,
a small error on the tau momentum leads to a large er-
ror on the angular distribution when boosted to the tau
rest frame. Precise reconstruction of the tau momenta is
therefore crucial for the C-matrix measurement and Bell
inequality test.

We consider two benchmark collider scenarios labelled
by “ILC” [23] and “FCC-ee” [24]. The relevant parameters
we use in our simulation are listed in the table below:
We notice that the beam energy resolution is significantly
better for FCC-ee, which will have a significant impact on
the Bell inequality test as we will see in the next section.
We assume the e+e� beams are unpolarised for both ILC
and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

⌧� ! ⌫⌧⇡
�, ⌧+ ! ⌫̄⌧⇡

+ (36)

ILC FCC-ee
energy (GeV) 250 240

luminosity (ab�1) 3 5
resolution e

+ (%) 0.18 0.83 · 10�4

resolution e
� (%) 0.27 0.83 · 10�4

�(e+e� ! HZ) (fb) 240.1 240.3
# of signal (� · BR · L) 414 691

Table I: Parameters for benchmark lepton colliders
[23, 24].

with Br(⌧� ! ⌫⇡�) = 0.109 [25]. For these decay modes,
the spin analyzing power is maximum, ↵f,d↵f̄ ,d̄

= �1.
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and ū, which must be performed at the rest frames of
⌧� and ⌧+, respectively. Since taus are heavily boosted,
a small error on the tau momentum leads to a large er-
ror on the angular distribution when boosted to the tau
rest frame. Precise reconstruction of the tau momenta is
therefore crucial for the C-matrix measurement and Bell
inequality test.

We consider two benchmark collider scenarios labelled
by “ILC” [23] and “FCC-ee” [24]. The relevant parameters
we use in our simulation are listed in the table below:
We notice that the beam energy resolution is significantly
better for FCC-ee, which will have a significant impact on
the Bell inequality test as we will see in the next section.
We assume the e+e� beams are unpolarised for both ILC
and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

⌧� ! ⌫⌧⇡
�, ⌧+ ! ⌫̄⌧⇡

+ (36)

ILC FCC-ee
energy (GeV) 250 240

luminosity (ab�1) 3 5
beam resolution e

+ (%) 0.18 0.83 · 10�4

beam resolution e
� (%) 0.27 0.83 · 10�4

�(e+e� ! HZ) (fb) 240.1 240.3
# of signal (� · BR · L) 414 691

Table I: Parameters for benchmark lepton colliders
[23, 24].

with Br(⌧� ! ⌫⇡�) = 0.109 [25]. For these decay modes,
the spin analyzing power is maximum, ↵f,d↵f̄ ,d̄

= �1.
We generate signal events with MadGraph5_aMC@NLO [26]
at leading order with the Standard Model, i.e. (, �) =
(1, 0). The beam energies are smeared according to the
parameters in Table I. We consider only “neutrinoless” Z-
boson decay modes, Z ! xx̄ with xx̄ = qq̄, e+e�, µ+µ�.
ILC and FCC-ee are expected to produce NILC = 414.3
and NFCC = 691.0 signal events, [e+e� ! HZ, Z ! xx̄,
H ! ⌧+⌧�, ⌧± ! ⌫⇡±], respectively. We then further
multiply the efficiency, ✏ILC = 0.99 and ✏FCC = 0.99,
corresponding to the event selection, |mrecoil � mH | <
5 GeV. ? The background is negligible with this cut.
We perform 100 pseudo-experiments for each benchmark
collider and estimate the statistical uncertainties on the
measurements.

In order to take account of the energy mismeasure-
ment, we smear the energies of all visible particles in the
final state as

Etrue ! Eobs = (1 + �E · !) · Etrue (37)

with the energy resolution �E = 0.03 [23], where ! is a
random number drawn from the normal distribution.

A. Solving kinematical constraints

Due to the presence of neutrinos in Eq. (36), the mo-
menta of two taus are not measured. To perform mea-
surements of the C-matrix and R⇤

CHSH
, the momenta of

two neutrinos must be reconstructed by solving kinemat-
ical constraints. For 6 unknown momentum components,
there are two mass-shell constraints: m2

⌧
= (p⌫⌧

+ p⇡�)2

and m2

⌧
= (p⌫̄⌧

+ p⇡+)2, and four conditions from the
energy-momentum conservation: (Pin � pZ)µ = (p⌫⌧

+
p⇡� + p⌫̄⌧

+ p⇡+)µ, and events can be fully reconstructed
up to two-fold solutions: is = 1, 2 (see Appendix B for
details).

The system is first boosted to the rest from of H. For
each solution, is, we then boost the system to the mea-
sured rest frame of ⌧� and calculate the r, n, k compo-
nents of the ⇡� direction, i.e. (uis

r
, uis

n
, uis

k
). The ⇡+ di-

rection, (ūis
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Results 

SM values:
Cij = (

1
1

−1)
E = 3

RCHSH = 2 ≃ 1.414

Entanglement ⟹ E > 1

Bell-nonlocal ⟹ RCHSH > 1

6

ILC FCC-ee

Cij

0

@
�0.592± 0.149 �0.008± 0.137 0.0151± 0.176
�0.0151± 0.142 �0.554± 0.159 0.002± 0.180
0.006± 0.169 0.003± 0.160 0.423± 0.172

1

A

0

@
�0.369± 0.114 0.007± 0.112 0.011± 0.140
0.006± 0.110 �0.352± 0.112 �0.004± 0.103
0.015± 0.124 0.006± 0.120 0.215± 0.124

1

A

E �1.280± 0.274 �0.837± 0.201
RCHSH 1.035± 0.161 0.717± 0.127

Table II: Result.

test, R⇤
CHSH

⌘ RCHSH(a⇤,a0⇤,b⇤,b0
⇤) is calculated with

Eqs. (26) and (27) and the C-matrix elements are ob-
tained with Eq. (29). Both solutions, is = 1, 2, are in-
cluded in the calculation of R⇤

CHSH
and Cab.

The result of the measurements for Cab, Ek and R⇤
CHSH

is summarised in Table II. We see that the C-marix
is measured diagonal in a good accuracy. However,
the diagonal elements are far off from the true values,
C = diag(1, 1,�1). Not only the magnitudes are signif-
icantly less than 1 but also the signs are flipped for all
diagonal components. We also see R⇤

CHSH
< 1 for both

ILC and FCC-ee, failing to see the violation of the clas-
sical bound.

There are two possible causes for this catastrophic re-
sult. One is the effect of false solutions. The false so-
lutions contribute to the measurements as many as the
true solutions and they may not carry the same quan-
tum information as in the true ones.2 The other effect is
smearing of the beam energies and energy mismeasure-
ment for the final state particles. These impacts on the
reconstruction of the tau momentum, in particular the
direction of the taus. Since taus are highly boosted, a
small error on the tau directions results in a large error
on the reconstructed ⌧�(+) rest frame.

B. Log-likelihood with the impact parameters

We have so far not used the information obtained from
the impact parameter measurements. Since taus are
marginally long-lived, c⌧ = 87.11 µm [25], and highly
boosted, one can observe a mismatch between the in-
teraction point and the origin of the ⇡± trajectories in
⌧± ! ⌫⇡±. The impact parameter ~b± is the minimal
displacement of the (extrapolated) ⇡± trajectory from
the interaction point. The magnitude of the impact
parameter |~b±| has an exponentially falling distribution
with the mean |~b±| ⇠ 100µm for E⌧± ⇠ mH/2, which
is significantly larger than the experimental resolutions,
�bT

' 2µm (transverse) and �bz
' 5µm (longitudinal)

[23].

2
We however checked that when smearing is turned off, even if

only false solutions are used for the measurements, the true val-

ues for Cab (and therefore also for R⇤
CHSH

and Ek) are recovered

as in the case where only true solutions are used.

If all quantities are accurately measured, the impact
parameter, ~b±, from the ⌧± ! ⌫⇡± decay, is related to
the directions of ⌧+ and ⇡+ and their angle ⇥± by [27]

~b± = |~b±|
�
sin�1 ⇥± · e⌧± � tan�1 ⇥± · e⇡±

�

⌘ ~breco± (e⌧±) (38)

where e⌧± and e⇡± are the unit vectors pointing to the
directions of ⌧± and ⇡±, respectively, and cos⇥± ⌘ (e⌧± ·
e⇡±). In the second line, we defined a 3-vector function
~breco± (e⌧±) and emphasised its dependence on e⌧± .

We use this information to “correct” the effect of energy
mismeasurement. First, we shift the energy of visible
particle ↵ (↵ = ⇡±, x, x̄) from the observed value as

Eobs

↵
! E↵(�↵) = (1 + �E · �↵) · Eobs

↵
, (39)

where �↵ is a nuisance parameter characterising the shift
with respect to the energy resolution �E . Using these
shifted energies, we solve the kinematical constraints, as
outlined in Appendix B, and obtain the tau directions
as functions of the nuisance parameters, eis

⌧±(���), up to
two-fold solutions, is = 1, 2, where ��� = {�+

⇡
, ��

⇡
, �x, �x̄}.

Based on the mismatch between the observed and recon-
structed impact parameters,

~�is

b±
(���) ⌘ ~b± �~breco±

�
eis
⌧+(���)

�
, (40)

we define a contribution to the log-likelihood from solu-
tion is as

Lis(���) = Lis
+
(���) + Lis

�(���) (41)

with

Lis
±(���) =

[�is

b±
(���)]2

x
+ [�is

b±
(���)]2

y

�2

bT

+
[�is

b±
(���)]2

z

�2

bz

. (42)

The total log-likelihood function is then defined as

L(���) = min
⇥
L1(���), L2(���)

⇤
+ �2

⇡+ + �2
⇡� + �2

x
+ �2

x̄
. (43)

The log-likelihood function, L(���), should be minimised
over the nuisance parameters, ���. We denote the location
of the minimum by ���⇤. We define “the most likely” so-
lution i⇤ as the solution that gives the smaller Lis , i.e.
Li⇤(���⇤) = min

⇥
L1(���⇤), L2(���⇤)

⇤
. Our best guess for the

tau momenta are therefore given by

p⇤
⌧± = pi⇤

⌧±(���
⇤) . (44)

- The result is catastrophic.  It may be blamed to the detector effect, since the 
reconstruction of tau-rest frames is very sensitive to the energy resolution.



The advantage of this expansion is the constraint (8.125) is automatically satisfied. We traded the
remaining unknown 4-vector (pµ

⌧+
� p

µ

⌧�) by the four unknown coe�cients, a, b, c and d. Our first goal
is to determine these coe�cients by solving four mass-shell constraints.

The first two mass-shell constraints are (p⌧+ � p⇡+)2 = m
2

⌫
= 0, and (p⌧� � p⇡�)2 = m

2

⌫
= 0. They

can be recast into
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2

⇡
+ cz = 0 ,

m
2

⌧
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2

⇡
� y � ay + bz � cm

2

⇡
= 0 , (8.128)

where we introduced [x, y, z] ⌘ [(ph · p⇡+), (ph · p⇡�), (p⇡+ · p⇡�)]. Similarly, the remaining two
mass-shell conditions, p2

⌧+
= m

2

⌧
and p

2
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⌧
, can be written as
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By subtracting these, we get
am

2

h
� bx+ cy = 0 . (8.130)

The three equations in Eqs. (8.128) and (8.130) can be organised in a matrix form

[M] · a = ⇤ , (8.131)

with

[M] =

0

@
�x m

2

⇡
�z

y �z m
2

⇡

m
2

h
�x y

1

A , a =

 
a

b

c

!
, ⇤ =

 
�x

�y

0

!
, (8.132)

and (�x, �y) = (m2

⌧
+ m

2

⇡
� x, m

2

⌧
+ m

2

⇡
� y). The solution can be readily obtained by inverting

Eq. (8.131) as
a = [M]�1 · ⇤ . (8.133)

The last coe�cient, d, can be obtained by considering the sum of the two equations in (8.129).
This leads to

d
2 =

1

�4q2
⇥
(1 + a

2)m2

h
+ (b2 + c

2)m2

⇡
� 4m2

⌧
+ 2(acy � abx � bcz)

⇤
. (8.134)

For physical solutions, the right-hand-side must be positive. For positive d
2, there are two-fold solu-

tions for p⌧+ and p⌧� , denoted by p
i

⌧+
and p

i

⌧� , corresponding to d > 0 (i = 1) and d < 0 (i = 2).

8.2 Likelihood function

Up to this point, we have not used the information from the impact parameter measurements. For
|~p⌧ | ⇠ mh/2, the impact parameter follows an exponentially falling distribution with the mean |~b±| ⇠
100µm. The resolutions of the impact parameter is �bT ' 20µm and �bz ' 40µm �bT ' 2µm and
�bz ' 5µm in the transverse and longitudinal directions, respectively (these are LHC values). If all
quantities are accurately measured, the impact parameter, b+, from the ⌧

+ ! ⇡
+
⌫̄ decay, is related

to the directions of ⌧+ and ⇡
+ and their angle ⇥+ by3

~b+ = |~b+|
�
sin�1 ⇥+ · ~e⌧+ � tan�1 ⇥+ · ~e⇡+

�
. (8.135)

3This angle can be computed as ⇥+ = arccos(~e⌧+ · ~e⇡+).
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We use this information to correct the pion energy mismeasurement.
In reality, we measure the energies of pions and Z decay products only with finite resolutions. Let

us suppose the observed energy of a particle, ↵ = ⇡
+
, ⇡

�
, j1, j2 (j1, j2 are decay products of Z), Eobs

↵
,

is distributed around the truth value, Etruth

↵
, as

E
obs

↵
= (1 + �

E

↵
· !↵) · Etruth

↵
, (8.136)

where the resolution �
E

↵
⇠ 0.03 is a constant and the !+ and !� are random parameters drawn from

the normal distribution. In order to correct the mismeasurement e↵ect, we take the observed energy
and modify it with the analogous formula

E↵(�↵) = (1 + �
E

↵
· �↵) · Eobs

↵
. (8.137)

In this expression the energy of ↵, E↵(�↵), is a function of the nuisance parameter, �↵. We determine
the nuisance parameters by marginalising the log-likelihood function, which we construct based on
Eq. (8.135).

Using the procedure described in the previous subsection, one can reconstruct the tau momenta
with E↵(�↵) (↵ = ⇡

+
, ⇡

�
, j1, j2). We will then be able to express the tau directions ~e⌧± and the angles

⇥± as functions of the nuisance parameters {�} = (�⇡+ , �⇡� , �j1 , �j2) up to two-fold solutions. We
denote them by ~e

i

⌧±({�}) and ⇥i

±({�}) for the solution i (i = 1, 2). From Eq. (8.135), we define

~�i

b+
({�}) ⌘ ~b+ � |~b+|

�
sin�1 ⇥i

+
({�}) · ~e i

⌧+({�}) � tan�1 ⇥i

+
({�}) · ~e⇡+

�
. (8.138)

We define ~�i

b�({�}) analogously with ~b�, ~e i

⌧�({�}) and ⇥i

�({�}). If everything is measured correctly,

(�E = �bT = �bz = 0), these vectors vanish, ~�i
⇤

b±({�}) = 0, for the correct solution i
⇤.
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We use this information to correct the pion energy mismeasurement.
In reality, we measure the energies of pions and Z decay products only with finite resolutions. Let

us suppose the observed energy of a particle, ↵ = ⇡
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, j1, j2 (j1, j2 are decay products of Z), Eobs

↵
,

is distributed around the truth value, Etruth

↵
, as

E
obs

↵
= (1 + �

E

↵
· !↵) · Etruth

↵
, (8.136)
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and modify it with the analogous formula
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In this expression the energy of ↵, E↵(�↵), is a function of the nuisance parameter, �↵. We determine
the nuisance parameters by marginalising the log-likelihood function, which we construct based on
Eq. (8.135).
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ILC FCC-ee

Cij

0

@
0.7803± 0.195 0.019± 0.162 0.046± 0.180
�0.001± 0.171 0.858± 0.165 0.000± 0.178
�0.024± 0.188 �0.010± 0.162 �0.678± 0.184

1

A

0

@
0.925± 0.131 �0.001± 0.122 0.023± 0.109
0.014± 0.128 0.968± 0.128 �0.018± 0.121
�0.009± 0.131 �0.009± 0.131 �0.928± 0.126

1

A

E 2.182± 0.309 2.797± 0.191
C[⇢] 0.664± 0.145 0.919± 0.118
S[⇢] 1.626± 0.187 1.922± 0.155

RCHSH 0.821± 0.167 1.273± 0.093

Table III: Result with impact parameters.

In what follows we use p⇤
⌧± in the quantum property mea-

surements.
In Table III we show the result of our quantum

property measurements when the information of impact
parameter measurements are incorporated in the log-
likelihood. We see that for both ILC and FCC-ee the
components of the C matrix is correctly measured in-
cluding the sign. The entanglement signature Ek is also
well measured in FCC-ee. The presence of entanglement,
Ek > 1, is confirmed in a precision well beyond 5�. The
R⇤

CHSH
quantity is well measured only in FCC-ee. Vio-

lation of the local-real bound, R⇤
CHSH

 1, is confirmed
at FCC-ee at ⇠ 2.8� level, while it is not seen at ILC.
The superiority of the performance in FCC-ee must be
attributed to the fact that the beam energy resolution is
much better than ILC. The precise knowledge of the ini-
tial state momentum is crucial to accurately reconstruct
the rest frame of ⌧±.

VII. CP MEASUREMENTS

Since the C matrix is sensitive to the CP phase �, one
can use the result of C matrix measurement and derive
the constraint on �. From Eq. (19) we see that only the
rn part of the C matrix is sensitive to �. By comparing
the measured C matrix entries in the rn part and the
prediction in Eq. (19), we construct the �2 function as

�2(�) =
(Crr � cos 2�)2

�2
rr

+
(Crn � sin 2�)2

�2
rn

+
(Cnn � cos 2�)2

�2
nn

+
(Cnr + sin 2�)2

�2
nr

, (45)

where Cij and �ij are the central value and the stan-
dard deviation, respectively, obtained from the analysis
in subsection VIB. The goodness of fits are found to
be �2

min
(ILC)/d.o.f. = 2.43/3 and �2

min
(FCC-ee)/d.o.f.=

0.18/3 for each benchmark collider.
The minimum of �2 appear at the vicinity of three CP-

conserving points: � = 0, ±180o (CP-even) and ±90o

(CP-odd). Focusing on the first minimum around � = 0,
the 1, 2 and 3 � regions of � obtained from this analysis
are listed in Table IV. The analysis is based on ��2(�) ⌘
�2(�) � �2

min
, whose values around � = 0 is plotted in

CL ILC FCC-ee

68.3% [�7.08o, 8.060] [�6.27o, 5.57o]
95.5% [�10.6o, 11.5o] [�8.98o, 8.35o]
99.7% [�15.95o, 16.79o] [�13.2o, 12.57o]

Table IV: Expected sensitivities on the CP phase �.

Figure 1: ��2 as a fuction of the CP phase �.

Fig. 1. We see that the allowed windows are asymmetric.
This is due to the presence of a bias in the C matrix
measurement: the measured C matrix does not approach
Eq. (19) in the limit of large statistics due to the effect
of energy mismeasurements and finite beam resolution.

We also see that the resolution of � from this anal-
ysis is roughly ⇠ 7.5o (ILC) and ⇠ 6o (FCC-ee) at 1
� level. This should be compared with the resolution
expected at HL-LHC, ⇠ 11.5o [27], while more recent
study [28] claims that the detector effect severely im-
pacts on the performance of CP measurements and the
CP phase hypothesis � = 0 can be distinguished from
� = 90o only at 95% CL. The studies dedicated to the
H⌧⌧ CP phase measurement at ILC suggest that the sen-
sitivity can reach 4.3o [29] or even 2.8o [30].
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1

1
−1)

E = 3

RCHSH = 2 ≃ 1.414

Entanglement ⟹ E > 1

Bell-nonlocal ⟹ RCHSH > 1
𝒮[ρ] = 2 Steerablity ⟹ 𝒮[ρ] > 1
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where Cij and �ij are the central value and the stan-
dard deviation, respectively, obtained from the analysis
in subsection VIB. The goodness of fits are found to
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(CP-odd). Focusing on the first minimum around � = 0,
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Figure 1: ��2 as a fuction of the CP phase �.

Fig. 1. We see that the allowed windows are asymmetric.
This is due to the presence of a bias in the C matrix
measurement: the measured C matrix does not approach
Eq. (19) in the limit of large statistics due to the effect
of energy mismeasurements and finite beam resolution.

We also see that the resolution of � from this anal-
ysis is roughly ⇠ 7.5o (ILC) and ⇠ 6o (FCC-ee) at 1
� level. This should be compared with the resolution
expected at HL-LHC, ⇠ 11.5o [27], while more recent
study [28] claims that the detector effect severely im-
pacts on the performance of CP measurements and the
CP phase hypothesis � = 0 can be distinguished from
� = 90o only at 95% CL. The studies dedicated to the
H⌧⌧ CP phase measurement at ILC suggest that the sen-
sitivity can reach 4.3o [29] or even 2.8o [30].
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parameter measurements are incorporated in the log-
likelihood. We see that for both ILC and FCC-ee the
components of the C matrix is correctly measured in-
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well measured in FCC-ee. The presence of entanglement,
Ek > 1, is confirmed in a precision well beyond 5�. The
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quantity is well measured only in FCC-ee. Vio-

lation of the local-real bound, R⇤
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 1, is confirmed
at FCC-ee at ⇠ 2.8� level, while it is not seen at ILC.
The superiority of the performance in FCC-ee must be
attributed to the fact that the beam energy resolution is
much better than ILC. The precise knowledge of the ini-
tial state momentum is crucial to accurately reconstruct
the rest frame of ⌧±.
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Fig. 1. We see that the allowed windows are asymmetric.
This is due to the presence of a bias in the C matrix
measurement: the measured C matrix does not approach
Eq. (19) in the limit of large statistics due to the effect
of energy mismeasurements and finite beam resolution.

We also see that the resolution of � from this anal-
ysis is roughly ⇠ 7.5o (ILC) and ⇠ 6o (FCC-ee) at 1
� level. This should be compared with the resolution
expected at HL-LHC, ⇠ 11.5o [27], while more recent
study [28] claims that the detector effect severely im-
pacts on the performance of CP measurements and the
CP phase hypothesis � = 0 can be distinguished from
� = 90o only at 95% CL. The studies dedicated to the
H⌧⌧ CP phase measurement at ILC suggest that the sen-
sitivity can reach 4.3o [29] or even 2.8o [30].
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Fig. 1. We see that the allowed windows are asymmetric.
This is due to the presence of a bias in the C matrix
measurement: the measured C matrix does not approach
Eq. (19) in the limit of large statistics due to the effect
of energy mismeasurements and finite beam resolution.

We also see that the resolution of � from this anal-
ysis is roughly ⇠ 7.5o (ILC) and ⇠ 6o (FCC-ee) at 1
� level. This should be compared with the resolution
expected at HL-LHC, ⇠ 11.5o [27], while more recent
study [28] claims that the detector effect severely im-
pacts on the performance of CP measurements and the
CP phase hypothesis � = 0 can be distinguished from
� = 90o only at 95% CL. The studies dedicated to the
H⌧⌧ CP phase measurement at ILC suggest that the sen-
sitivity can reach 4.3o [29] or even 2.8o [30].
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Fig. 1. We see that the allowed windows are asymmetric.
This is due to the presence of a bias in the C matrix
measurement: the measured C matrix does not approach
Eq. (19) in the limit of large statistics due to the effect
of energy mismeasurements and finite beam resolution.

We also see that the resolution of � from this anal-
ysis is roughly ⇠ 7.5o (ILC) and ⇠ 6o (FCC-ee) at 1
� level. This should be compared with the resolution
expected at HL-LHC, ⇠ 11.5o [27], while more recent
study [28] claims that the detector effect severely im-
pacts on the performance of CP measurements and the
CP phase hypothesis � = 0 can be distinguished from
� = 90o only at 95% CL. The studies dedicated to the
H⌧⌧ CP phase measurement at ILC suggest that the sen-
sitivity can reach 4.3o [29] or even 2.8o [30].
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for signal/background separation is the invariant mass
of the visible decay products of two taus, mvis(⌧+⌧�).
However, due to presence of neutrinos in tau decays, the
mvis(⌧+⌧�) distributions have long tails and the signal
and background distributions therefore overlap. A usual
practice to overcome this problem is to try to reconstruct
the tau momenta by making some assumption on the neu-
trino momenta, either based on kinematics (e.g. collinear
approximation) or the knowledge of the Standard Model
(e.g. likelihood approach). However, this is not an option
here, since our aim is to measure the angular distribution
and making such assumptions defeats our purpose.

At e+e� colliders, the main production channel near
the threshold,

p
s ⇠ (mH + mZ), is e+e� ! ZH fol-

lowed by Z ! qq̄/`+`� and H ! ⌧+⌧�. The main
background is e+e� ! Z⌧+⌧�, where the pair of taus
comes from an off-shell photon. Unlike hadron colliders,
the full 4-momentum, Pµ

in
, of the initial state (e+e� pair)

is precisely known at lepton colliders. From this and the
measured Z-boson momentum, pµ

Z
= (pq/`� + pq̄/`+)

µ,
one can reconstruct the Higgs momentum as

pµ
H

= Pµ

in
� pµ

Z
(35)

in a good accuracy independently from the Higgs de-
cays. The distribution of the recoil mass, mrecoil =p

(Pin � pZ)2, therefore sharply peaks at the Higgs mass
in the signal. By selecting events that fall within an nar-
row window, |mrecoil�mH | < 5 GeV (Is 5 GeV optimal?),
one can achieve background/signal ⇠? with the signal ef-
ficiency ?%.

The second advantage of e+e� colliders over hadron
colliders is the ability of reconstructing two tau mo-
menta by solving kinematical constraints. This is possi-
ble thanks to the fact that the initial state 4-momentum,
Pµ

in
, is known in a good precision. This is important for

the C-matrix measurement and the Bell inequality test
since they are based on the angular distributions of u
and ū, which must be performed at the rest frames of
⌧� and ⌧+, respectively. Since taus are heavily boosted,
a small error on the tau momentum leads to a large er-
ror on the angular distribution when boosted to the tau
rest frame. Precise reconstruction of the tau momenta is
therefore crucial for the C-matrix measurement and Bell
inequality test.

We consider two benchmark collider scenarios labelled
by “ILC” [23] and “FCC-ee” [24]. The relevant parameters
we use in our simulation are listed in the table below:
We notice that the beam energy resolution is significantly
better for FCC-ee, which will have a significant impact on
the Bell inequality test as we will see in the next section.
We assume the e+e� beams are unpolarised for both ILC
and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

⌧� ! ⌫⌧⇡
�, ⌧+ ! ⌫̄⌧⇡

+ (36)

ILC FCC-ee
energy (GeV) 250 240

luminosity (ab�1) 3 5
beam resolution e

+ (%) 0.18 0.83 · 10�4

beam resolution e
� (%) 0.27 0.83 · 10�4

�(e+e� ! HZ) (fb) 240.1 240.3
# of signal (� · BR · L) 414 691

Table I: Parameters for benchmark lepton colliders
[23, 24].

with Br(⌧� ! ⌫⇡�) = 0.109 [25]. For these decay modes,
the spin analyzing power is maximum, ↵f,d↵f̄ ,d̄

= �1.
We generate signal events with MadGraph5_aMC@NLO [26]
at leading order with the Standard Model, i.e. (, �) =
(1, 0). The beam energies are smeared according to the
parameters in Table I. We consider only “neutrinoless” Z-
boson decay modes, Z ! xx̄ with xx̄ = qq̄, e+e�, µ+µ�.
ILC and FCC-ee are expected to produce NILC = 414.3
and NFCC = 691.0 signal events, [e+e� ! HZ, Z ! xx̄,
H ! ⌧+⌧�, ⌧± ! ⌫⇡±], respectively. We then further
multiply the efficiency, ✏ILC = 0.99 and ✏FCC = 0.99,
corresponding to the event selection, |mrecoil � mH | <
5 GeV. ? The background is negligible with this cut.
We perform 100 pseudo-experiments for each benchmark
collider and estimate the statistical uncertainties on the
measurements.

In order to take account of the energy mismeasure-
ment, we smear the energies of all visible particles in the
final state as

Etrue ! Eobs = (1 + �E · !) · Etrue (37)

with the energy resolution �E = 0.03 [23], where ! is a
random number drawn from the normal distribution.

A. Solving kinematical constraints

Due to the presence of neutrinos in Eq. (36), the mo-
menta of two taus are not measured. To perform mea-
surements of the C-matrix and R⇤

CHSH
, the momenta of

two neutrinos must be reconstructed by solving kinemat-
ical constraints. For 6 unknown momentum components,
there are two mass-shell constraints: m2

⌧
= (p⌫⌧

+ p⇡�)2

and m2

⌧
= (p⌫̄⌧

+ p⇡+)2, and four conditions from the
energy-momentum conservation: (Pin � pZ)µ = (p⌫⌧

+
p⇡� + p⌫̄⌧

+ p⇡+)µ, and events can be fully reconstructed
up to two-fold solutions: is = 1, 2 (see Appendix B for
details).

The system is first boosted to the rest from of H. For
each solution, is, we then boost the system to the mea-
sured rest frame of ⌧� and calculate the r, n, k compo-
nents of the ⇡� direction, i.e. (uis

r
, uis

n
, uis

k
). The ⇡+ di-

rection, (ūis
r
, ūis

n
, ūis

k
), are obtained at the measured rest

frame of ⌧+ in the same way. For the Bell inequality

Superiority of FCC-ee over ILC is due to 
a better beam resolution

≫ 5σ
∼ 5σ



CP measurement
• Under CP, the spin correlation matrix transforms:  


• This can be used for a model-independent test of CP violation.  We define:

C CP CT

A ≡ (Crn − Cnr)2 + (Cnk − Ckn)2 + (Ckr − Crk)2 ≥ 0

• Observation of  immediately confirms CP violation.A ≠ 0

• From our simulation, we observe

8

Model independent CP test

Under CP, the C matrix transforms as C
CP��! CT .

This fact can be used for a model-independent test of CP.
To measure the asymmetry in the C matrix, we define

A = (Crn � Cnr)
2 + (Cnk � Ckn)

2 + (Ckr � Crk)
2 � 0 .

(46)
An experimental verification of A 6= 0 immediately con-
firms CP violation.

From the analysis described in subsection VIB, A is
measured as:

0.204± 0.173 (ILC)

0.112± 0.085 (FCC-ee)

Here, the error corresponds to a 1� statistical uncer-
tainty obtained from 100 pseudo-experiments. The re-
sult is consistent with the Standard Model (i.e. absence
of CP violation) at ⇠ 1� level.

In the explicit model defined by Eq. (15), we have
A = 4 sin2(2�). One can interpret the above model-
independent result within this model and derive bounds
on �. In the domain around � = 0, the following limits
are obtained at 1�:

|�| < 8.9o (ILC)

|�| < 6.4o (FCC-ee)

We see that these bounds are as good as the limits ob-
tained in the �2 analysis (see Table IV).

VIII. CONCLUSIONS
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Appendix A: Spin vs angular correlations

The spin correlation hsas̄bi of ⌧�⌧+ and the angular
correlation huaūbi between the ⌧�⌧+ decay products are
related by Eq. (25). To derive this result,3 we start by re-
membering Eq. (24), i.e. the conditional probability that
the decay product, d, takes the direction u (at the rest

3
Our derivation is largely based on [31].

frame of ⌧�) , when the tau spin is polarised into s di-
rection, is given by

P (u|s) = 1 + ↵f,d u · s

with the normalisation
R

d⌦u
4⇡

P (u|s) = 1.
We introduce the join probability that ⌧� and ⌧+ are

polarised into s and s̄, and write it as P (s, s̄) with normal-
isation

R
d⌦s
4⇡

d⌦s̄
4⇡

P (s, s̄) = 1. For arbitrary unit vectors
a and b, the correlation between the ⌧� and ⌧+ spin
components, sa ⌘ a · s and s̄b ⌘ b · s̄, can be written as

hsas̄bi =

Z
d⌦s

4⇡

d⌦s̄

4⇡
(a · s)(b · s̄)P (s, s̄) . (A1)

Similarly, the correlation between the components of the
u and ū vectors is given by

huaūbi =

Z
d⌦u

4⇡

d⌦ū

4⇡

d⌦s

4⇡

d⌦s̄

4⇡
(a · u)(b · ū)

⇥P (u|s)P (ū|̄s)P (s, s̄) . (A2)

We carry out the integration d⌦u by expressing u in a
polar coordinate where the pole is taken into the s direc-
tion (we call this z direction). Similarly, we represent ū
in a polar coordinate with the pole in the s̄ direction (z0
direction). Using these two coordinate systems, we have

u · s = c✓, ū · s̄ = c✓0 ,

a · u = axs✓c� + ays✓s� + azc✓,

b · ū = bx0s✓0c�0 + by0s✓0s�0 + bz0c✓0 ,

az = a · s = sa, bz0 = b · s̄0 = s̄b , (A3)

and Eq. (A2) is expressed as

huaūbi =

Z
dc✓d�

4⇡

dc✓0d�0

4⇡

d⌦s

4⇡

d⌦s̄

4⇡
(axs✓c� + ays✓s� + azc✓)
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where the first bracket on the RHS is nothing but hsas̄bi
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• This model independent bounds can be translated to the constraint on the CP-
phase  δ

Cij =
cos 2δ sin 2δ 0

−sin 2δ cos 2δ 0
0 0 −1

ℒint ∝ H ψ̄τ(cos δ+iγ5 sin δ) ψτ A(δ) = 4 sin2 2δ

consistent with 
absence of CPV



CP measurement
• Focusing on the region near , we find the 1-σ bounds:|δ | = 0

8

Model independent CP test

Under CP, the C matrix transforms as C
CP��! CT .

This fact can be used for a model-independent test of CP.
To measure the asymmetry in the C matrix, we define

A = (Crn � Cnr)
2 + (Cnk � Ckn)

2 + (Ckr � Crk)
2 � 0 .

(46)
An experimental verification of A 6= 0 immediately con-
firms CP violation.

From the analysis described in subsection VIB, A is
measured as:

0.204± 0.173 (ILC)

0.112± 0.085 (FCC-ee)

Here, the error corresponds to a 1� statistical uncer-
tainty obtained from 100 pseudo-experiments. The re-
sult is consistent with the Standard Model (i.e. absence
of CP violation) at ⇠ 1� level.

In the explicit model defined by Eq. (15), we have
A = 4 sin2(2�). One can interpret the above model-
independent result within this model and derive bounds
on �. In the domain around � = 0, the following limits
are obtained at 1�:

|�| <
⇢

8.9o (ILC)
6.4o (FCC-ee) .

We see that these bounds are as good as the limits ob-
tained in the �2 analysis (see Table IV).
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Appendix A: Spin vs angular correlations
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related by Eq. (25). To derive this result,3 we start by re-
membering Eq. (24), i.e. the conditional probability that
the decay product, d, takes the direction u (at the rest

3
Our derivation is largely based on [31].
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u and ū vectors is given by

huaūbi =
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[Jeans and G. W. Wilson 2018]

Δδ ∼ 11.5o (HL-LHC)

Δδ ∼ 4.3o (ILC)



Summary
• High energy tests of entanglement and Bell inequality has recently attracted an 

attention.


•  pairs from  form the EPR triplet state , 

and maximally entangled.


• We investigated feasibility of quantum property tests @ ILC and FCC-ee.


• Quantum test requires to a precise reconstruction of the tau rest frames and IP 
information is crucial to achieve this.


• Spin correlation is sensitive to CP-phase and we can measure the CP-phase as a 
byproduct of the quantum property measurement.

τ+τ− H → τ+τ− |Ψ(1,0)⟩ =
| + , − ⟩ + | − , + ⟩

2

Entanglement Steering Bell-inquality CP-phase

ILC

FCC-ee

∼ 4σ
≫ 5σ

∼ 3σ
∼ 5σ ∼ 3σ

8.9o

6.4o
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8 H ! ⌧
+
⌧

�
at a e

+
e
�
collider

We consider the measurement of the Bell inequality at an e
+
e
� collider. Our target is the production of

entangled ⌧
+
⌧
� pairs from the e+e� ! HZ, followed by H ! ⌧

+
⌧
�. To measure the spin correlation

between the two taus, we consider the tau decays, ⌧+ ! ⇡
+
⌫̄ and ⌧

+ ! ⇡
�
⌫.

We list a set of important parameters in the analysis.1

�(e+e� ! HZ)
��p

s=500GeV
= 65 fb · · · [unpolarised]

�(e+e� ! HZ)
��p

s=250GeV
= 240.1 fb · · · [unpolarised]

�(e+e� ! HZ)
��p

s=240GeV
= 240.3 fb · · · [unpolarised]

�(e+e� ! HZ)
��p

s=250GeV
= 318 fb · · · [P (e+, e�) = (+0.3,�0.8)]

BR(H ! ⌧
+
⌧
�) = 0.0632

BR(⌧� ! ⇡
�
⌫⌧ ) = 0.109

BR(Z ! µ
+
µ
�) = 0.0336

BR(Z ! jj(µµ, ee)) = 0.800

�(e+e� ! HZ)unpol
250

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!jj(µµ,ee) = 0.1442 fb

�(e+e� ! HZ)unpol
240

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!jj(µµ,ee) = 0.1443 fb

�(e+e� ! HZ)unpol
250

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!µµ = 0.0061 fb

�(e+e� ! HZ)unpol
240

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!µµ = 0.0061 fb (8.123)

The ILC luminosity can be asssumed to be 300, 1000 and 3000 fb�1. The above estimate suggests
that we cannot ask for the Z ! µµ channel to obtain a precise Z momentum.

8.1 Momentum reconstruction

Since neutrinos are invisible in the detector, one has to reconstruct the neutrino momenta, or equiva-
lently the tau momenta, by solving various kinematical constraints. We assume the four momenta of
the initial e+e� pair, P µ

in
, and the Z-boson, pµ

Z
, are acculately measured.2 This means we can obtain

the Higgs momentum accurately by
p
µ

h
= P

µ

in
� p

µ

Z
. (8.124)

The tau momenta, pµ
⌧+

and p
µ

⌧� , are unknown but the sum is constrained by

p
µ

⌧+
+ p

µ

⌧� = p
µ

h
. (8.125)

Each tau momentum is a 4-vector, so they can be expanded by four independent 4-vectors. We choose
p
µ

h
, pµ

⇡+ , p
µ

⇡� and q
µ as the basis vectors (neither orthogonal nor normalised), where we introduced

q
µ ⌘ 1

m
2

h

✏
µ⌫⇢�

p
⌫

h
p
r

⇡+ p
s

⇡� , (8.126)

which is orthogonal to the other basis vectors, (q · ph) = (q · pµ
⌧+
) = (q · pµ

⌧�) = 0. In terms of these
basis vectors, the tau momenta are expanded as

p
µ

⌧± =
1 ⌥ a

2
p
µ

h
± b

2
p
µ

⇡+ ⌥ c

2
p
µ

⇡� ± dq
µ
. (8.127)

1See [1509.02853].
2This assumption may not be justified.
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� pairs from the e+e� ! HZ, followed by H ! ⌧

+
⌧
�. To measure the spin correlation

between the two taus, we consider the tau decays, ⌧+ ! ⇡
+
⌫̄ and ⌧

+ ! ⇡
�
⌫.

We list a set of important parameters in the analysis.1

�(e+e� ! HZ)
��p

s=500GeV
= 65 fb · · · [unpolarised]

�(e+e� ! HZ)
��p

s=250GeV
= 240.1 fb · · · [unpolarised]

�(e+e� ! HZ)
��p

s=240GeV
= 240.3 fb · · · [unpolarised]

�(e+e� ! HZ)
��p

s=250GeV
= 318 fb · · · [P (e+, e�) = (+0.3,�0.8)]

BR(H ! ⌧
+
⌧
�) = 0.0632

BR(⌧� ! ⇡
�
⌫⌧ ) = 0.109

BR(Z ! µ
+
µ
�) = 0.0336

BR(Z ! jj, µµ, ee) = 0.766

�(e+e� ! HZ)unpol
250

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!jj,µµ,ee = 0.1381 fb

�(e+e� ! HZ)unpol
240

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!jj,µµ,ee = 0.1382 fb

�(e+e� ! HZ)unpol
250

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!µµ = 0.0061 fb

�(e+e� ! HZ)unpol
240

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!µµ = 0.0061 fb (8.123)

The ILC luminosity can be asssumed to be 300, 1000 and 3000 fb�1. The above estimate suggests
that we cannot ask for the Z ! µµ channel to obtain a precise Z momentum.

8.1 Momentum reconstruction

Since neutrinos are invisible in the detector, one has to reconstruct the neutrino momenta, or equiva-
lently the tau momenta, by solving various kinematical constraints. We assume the four momenta of
the initial e+e� pair, P µ

in
, and the Z-boson, pµ

Z
, are acculately measured.2 This means we can obtain

the Higgs momentum accurately by
p
µ

h
= P

µ

in
� p

µ

Z
. (8.124)

The tau momenta, pµ
⌧+

and p
µ

⌧� , are unknown but the sum is constrained by

p
µ

⌧+
+ p

µ

⌧� = p
µ

h
. (8.125)

Each tau momentum is a 4-vector, so they can be expanded by four independent 4-vectors. We choose
p
µ

h
, pµ

⇡+ , p
µ

⇡� and q
µ as the basis vectors (neither orthogonal nor normalised), where we introduced

q
µ ⌘ 1

m
2

h

✏
µ⌫⇢�

p
⌫

h
p
r

⇡+ p
s

⇡� , (8.126)

which is orthogonal to the other basis vectors, (q · ph) = (q · pµ
⌧+
) = (q · pµ

⌧�) = 0. In terms of these
basis vectors, the tau momenta are expanded as

p
µ

⌧± =
1 ⌥ a

2
p
µ

h
± b

2
p
µ

⇡+ ⌥ c

2
p
µ

⇡� ± dq
µ
. (8.127)

1See [1509.02853].
2This assumption may not be justified.
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Bell inequality

RCHSH ≡
1
2 ⟨sα

a ⋅ sβ
b ⟩ − ⟨sα

a ⋅ sβ
b′￼⟩ + ⟨sα

a′￼⋅ sβ
b ⟩ + ⟨sα

a′￼⋅ sβ
b′￼⟩

⟨sα
a ⋅ sβ

b ⟩ = ̂ai b̂j ⋅ ⟨sα
i ⋅ sβ

j ⟩ = ̂ai Cij b̂i

=
1
2

̂ai Cij (b̂ − b̂′￼)j + ̂a′￼i Cij (b̂ + b̂′￼)j

unit vectors: ̂a, ̂a′￼, b̂, b̂′￼

max [RCHSH] = λ1 + λ2
̂a, ̂a′￼, b̂, b̂′￼

(  are 3 eigenvalues of  )λ1 ≥ λ2 ≥ λ3 CTC

λ1 + λ2 > 1

Violation of Bell inequality implies

M. Fabbrichesi, R. Floreanini, 
G. Panizzo (2021)



