

ROK ZAŁOZENIA 1364

Hyperon studies and development of Forward tracker for HADES detector

Narendra Rathod (Jagiellonian University, Poland)

Krakow June 23 – 28, 2019

narendra.shankar.rathod@doctoral.

uj.edu.pl

Outline mana stud

1. Why do we want to study hyperons with HADES?

2. Hyperon production and decay

3. HADES detector

- 4. New upgrades
- 5. Forward tracker
- 6. Summary of contribution

Krakow June 23 – 28, 2019

Structure of hyperons

- Baryon is a type of composite subatomic particle which contains 3 valence quarks
- Ground states are measured and the structures are well known

Krakow June 23 – 28, 2019

Fermi National Accelerator Laboratory

FERMILAB-Conf-75/79-THY October 1975

WHY ARE HYPERONS INTERESTING AND DIFFERENT FROM NONSTRANGE BARYONS?[†]

Harry J. Lipkin

Weizmann Institute of Science, Rehovot, Israel, Argonne National Laboratory, Argonne, Illinois 60439 and Fermi National Accelerator Laboratory, Batavia, Illinois 60510

I. WHO NEEDS HYPERONS?

The first question to ask about any new topic is "who needs it?". One possible answer to "who needs hyperons?" is "seen one hadron, seen them all." All hadrons are alike in the zero approximation. A useful hyperon experiment must go beyond this zero approximation to observe the differences between hyperons and other hadrons. For example, a total cross section measurement for hyperon-nucleon scattering with errors too large to reveal the difference between hyperon-nucleon and nucleon-nucleon cross sections is not very useful.

Krakow June 23 – 28, 2019

Electromagnetic baryonic transitions in Time-Like and Space-Like region

Krakow June 23 – 28, 2019

eTFF in Space-like and Time-like region

Dalitz decays, appearance of intermediate vector mesons $\rho/\sigma/\Phi$ J_{PC} = 1⁻⁻ (γ !)

Krakow June 23 – 28, 2019

Our goals through Hyperon Decay

HADES: $\Gamma(\Delta(1232) \rightarrow p e+e-) = 0.66 \text{ MeV}, BR = 4.19 \cdot 10^{-5}$

Krakow June 23 – 28, 2019

High Acceptance Di-Electron Spectrometer

Observabl	e Detector
р	Magnet+MDC
β	TOF+RPC
dÉ/dx	MDC+TOF
e+,e-	RICH
γ ,e+,e -	ECAL
dp/p	1 % to 2 %

州

Narendra Rathod

Krakow June 23 – 28, 2019

Straw tube Forward tracker

of all possible p are reconstructed

Krakow June 23 – 28, 2019

Simulation

Krakow June 23 – 28, 2019

Straw Tube Detector

- → Straw diameter = 10.1 mm, cathode thickness = 30µm aluminized Mylar, anode wire 20µm gold plated tungsten wire.
- → Drift gas = Ar : CO_2 , 90:10 with 2 bar overpressure.
- → Time over threshold technique is used to measure energy loss
 Modular structure

Single straws with their end plugs

Pasttrec chips

Frontend electronic card D. Przyborowski et al., JINST 013P 0516. (2016)

Krakow June 23 – 28, 2019

Performance of Straw tube detector

Amplitude variation along the straws

Electronic Cross-talk between the channels

- EPJ Web Conf. 199 (2019) 05022
- EPJ Web Conf., 199 (2019) 050183
- Basic Concepts in Nuclear Physics: Theory, Experiments and Applications Springer journal of Proceedings - Rabida-2018
- D. Przyborowski et al., JINST_013P_0516. (2016

Space charge distribution

The amplitude drop at a rate of **25 kHz/cm** - the highest expected in the FT is about **10 %**.

EPJ Web Conf., 199 (2019) 05022

Krakow June 23 – 28, 2019

Results

- Drift Time Vs TOT : Detector evaluation
- Spatial Resolution : ~ 150 μm
- PID separation observable in $\sum TOT / \sum dx$

Spatial resolution from 96 straws at 1900 V

Thank you

EST 1364

Narendra Rathod

Krakow June 23 – 28, 2019

en.uj.edu.pl

Hadronic channels studied by HADES — full list

→ pp@3.5 GeV

- "Inclusive A production in proton-proton collisions at 3.5 GeV", Phys. Rev. C95, (2017) 015207
- "Partial Wave Analysis of the Reaction $p(3.5 \text{ GeV}) + p \rightarrow pK + \Lambda$ to Search for the "ppK" Bound State", Phys. Lett. B742 (2015) 242-248
- "Baryonic resonances close to the K N threshold: the case of Λ (1405) in pp collisions", Phys. Rev. C87 (2013) 025201
- "Production of $\Sigma^{+/-} \pi^{-/+} pK^+$ in p⁺ p reactions at 3.5 GeV beam energy", Nucl. Phys. A881 (2012) 178-186
- "Baryonic resonances close to the K N threshold: the case of Σ (1385) + in pp collisions", Phys. Rev. C85 (2012) 035203

\rightarrow pNb@3.5 GeV

- "Σ 0 production in proton nucleus collisions near threshold", Phys. Lett. B781 (2018) 735-740
- "The Λ p interaction studied via femtoscopy in p + Nb reactions at $\sqrt{s_{NN}}$ =3.18 GeV", Phys. Rev. C94 (2016) no.2, 025201
- "Two-particle correlation measurements in p+Nb reactions \sqrt{s}_{NN} =3.18 GeV",
 - J. Phys. Conf. Ser. 668 (2016) no.1, 012037
- "Subthreshold Ξ Production in Collisions of p(3.5 GeV) + Nb", Phys. Rev. Lett. 114 (2015) 212301
- "Lambda hyperon production and polarization in collisions of p(3.5 GeV) + Nb", Eur. Phys. J. A50 (2014) 81

\rightarrow ArKCl@1.76 AGeV

"Deep Subthreshold Ξ^- production in Ar+KCl Reactions at 1.76 AGeV", Phys. Rev. Lett. 103 (2009) 132301

Cond medicine ind some Uniwersytet Jagielloński w Krakowie Chie omo medicine Chie om

Thank you

