Photoproduction of mesons from quasifree nucleons

B. Krusche, U. Basel

Introduction

- Experimental setups
- Results

Conclusions

electromagnetic excitations of the neutron

- importance of measurements off the neutron:
 - different resonance contributions
 - needed for extraction of iso-spin composition of elm. couplings

- complications due to use of nuclear targets (deuteron):
 - coincident detection of recoil nucleons
 - Fermi motion, nuclear effects like FSI, coherent contributions

mesurements off quasifree nucleons bound in the deuteron

Complications:

- (1) detection of recoil nucleons mandatory
- (2) reaction kinematics modified by Fermi motion smears out all structures
- (3) possible influence of meson nucleon and nucleon-nucleon FSI on cross sections Solutions:
- (1,2) Typical neutron detection efficiencies for elm. calorimeters in the range 10% 30%, kinematics completely defined without measurement of recoil neutron energy:
 - initial state: incident photon and deuteron at rest known/measured: $E_{\gamma}, m_d, \vec{p_d} = 0$
 - final state: meson, participant, and spectator nucleon known/measured: $m_s, m_p, \Theta_p, \Phi_p, m_m, \vec{p}_m$ not measured: T_p, \vec{p}_s (four variables)

- four constraints from energy/momentum conservation
- (3) comparison of quasifree production off protons and production off free protons to study FSI effects

Calorimeters: Crystal Barrel & Crystal Ball with TAPS

lin. pol.: available, circ. pol.: available

Results - Example I: Photoproduction of π^0 **-mesons**

- photoproduction of single pions one of best studied meson production reactions
- backbone of partial wave analyses
 like SAID, MAID, BnGn,...
 for extraction of resonance properties
- reaction with neutral pions of great interest
- impact of π^0 -production off the neutron?
- Existing data base/ new results

W[MeV]

isospin decompostion of pion photoproduction

$$\begin{aligned} A(\gamma p \to \pi^+ n) &= -\sqrt{\frac{1}{3}} A^{V3} + \sqrt{\frac{2}{3}} (A^{IV} - A^{IS}) \\ A(\gamma p \to \pi^0 p) &= +\sqrt{\frac{2}{3}} A^{V3} + \sqrt{\frac{1}{3}} (A^{IV} - A^{IS}) \\ A(\gamma n \to \pi^- p) &= +\sqrt{\frac{1}{3}} A^{V3} - \sqrt{\frac{2}{3}} (A^{IV} + A^{IS}) \\ A(\gamma n \to \pi^0 n) &= +\sqrt{\frac{2}{3}} A^{V3} + \sqrt{\frac{1}{3}} (A^{IV} + A^{IS}) \end{aligned}$$

$\gamma N ightarrow N \pi^0$ - reaction-model fits, predictions

- results agree for proton target (because fitted to proton data)
- predictions for neutron target disagree
- data from $\gamma n \rightarrow p\pi^-$ do not sufficiently constrain the fits for neutron target (different non-resonant backgrounds)

$\gamma n ightarrow n \pi^0$ - quasifree π^0 -production off neutrons

(M. Dieterle et al., PRL 112 (2014) 142001)

- significant effects from final state interactions in proton data
- neutron data corrected under assumption of identical FSI for both reactions
- poor agreement between neutron data and PWA predictions

$\gamma n ightarrow n\pi^0$ - quasifree π^0 -production off neutrons

(M. Dieterle et al., PRL 112 (2014) 142001)

- only small effects for I = 3/2 (Δ -states) partial waves
- large effects for I = 1/2 (N^{\star}) partial waves and background

polarization observables - beam - target

- completely model independent multipole analysis requires measurement of:
 - 4 single polarization observables (σ, Σ, T, P)

Chiang & Tabakin PRC 55 (1997)

• 4 carefully chosen double polarization observables

photon	target polarization				
polarization	-	X	y y	I Z	
unpolarized	σ	- -	Т	 _ 	T I I
linearly	Σ	Н	-P	-G	
circularly	_	F	r _ L		1

$$\begin{array}{ll} \displaystyle \frac{d\sigma}{d\Omega} = & \displaystyle \frac{d\sigma_0}{d\Omega} & \left\{1 - P_l \Sigma \cos(2\phi) \right. \\ & \left. + P_x \left[-P_l H \sin(2\phi) + P_c F\right] \right. \\ & \left. - P_y \left[-T + P_l P \cos(2\phi)\right] \right. \\ & \left. - P_z \left[-P_l G \sin(2\phi) + P_c E\right] \right\} \end{array}$$

$\gamma N ightarrow N \pi^o$ - helicity dependent cross sections

(M. Dieterle et al., PLB 779 (2017) 523)

• helicity component $\sigma_{1/2}$

• helicity component $\sigma_{3/2}$

New PWA will be much better constrained for neutron target!

quasifree $\gamma n \rightarrow n\eta$: unexpected structure

(I. Jaegle et al., D. Werthmüller et al., L. Witthauer et al.)

pronounced, narrow structure in neutron excitation function close to W=1.68 GeV

- width of structure pprox 30 MeV
- observed for deuterium (several experiments) and 3-helium targets
- many different potential explanations:
 - interference effects in S₁₁-wave
 - more complicated coupled channel effects
 - intrinsic narrow resonances (P_{11} -like pentaquark)

$\gamma N ightarrow N\eta$ - helicity dependent cross sections

(L. Witthauer et al., PRL 117 (2016) 132502)

• helicity component $\sigma_{1/2}$

• helicity component $\sigma_{3/2}$

ΜΔΜΙ

- structure in neutron excitation function is in $\sigma_{1/2}$ part!
- for proton and neutron very small contributions from $\sigma_{3/2}$
- for proton possibly indication for contribution from $P_{13}(1720)$ state

$\gamma n ightarrow n\eta$ - angular dependence of helicity decomposition

• A_1 coefficient: best agreement with BnGa fit with narrow P_{11} (pos. interference)

$\gamma n ightarrow n\eta$ - more structure, more surprizes

Recent result from GRAAL experiment: V.A. Kuznetsov et al., PRC 91 (2015) 042201(R)

Narrow structures in beam asymmetry for Compton scattering off proton:

$\gamma n ightarrow n\eta$ - more structure, more surprizes

Recent result from GRAAL experiment: V.A. Kuznetsov et al., PRC 91 (2015) 042201(R) Recent result from A2 MAMI experiment: D. Werthmüller et al., PRC 92 (2015) 069801

Narrow structures in beam asymmetry for Compton scattering off proton:

Relation to $\gamma n
ightarrow n\eta$? peak at same W significant

photoproduction of meson pairs

$\gamma N ightarrow N \pi^o \pi^o$ - total cross sections

(M. Dieterle, M. Oberle et al., EPJA 51(2015) 142)

- **moderate FSI effects (\approx15%)**
- Iarge discrepancy with GRAAL neutron data
- so far no reasonable model for neutron data

$\gamma N \rightarrow N \pi^o \pi^o$ - invariant mass & angular distributions

(M. Dieterle, M. Oberle et al., EPJA 51 (2015) 142)

• pion -nucleon invariant mass

• angular distr. - Θ^* polar angle of $\pi\pi$ -system

- invariant mass distributions show contributions from $\Delta^{\star}, N^{\star} \to \pi \Delta(1232)$ & $\Delta^{\star}, N^{\star} \to \pi D_{13}(1520)$ for p & n
- proton & neutron angular distributions different for large W \rightarrow different resonance contributions for $\Delta^*, N^* \rightarrow \pi D_{13}(1520)$?

contributions to $\gamma N \rightarrow N \pi^o \pi^o$ invariant mass spectra

(M. Dieterle, M. Oberle et al., EPJA 51 (2015) 142)

• simultaneous fit of $\pi\pi$ and πN invariant mass spectra with simulated line shapes

- second resonance bump dominated by $\pi\Delta(1232)$ intermediate state for p and n
- third bump has stronger 'phase-space' contributions for *p*
- results for quasi-free proton agree with BnGa PWA of free proton data

$\gamma N ightarrow N \pi^o \pi^o$ - helicity dependent cross sections

(M. Dieterle et al., preliminary)

• helicity component $\sigma_{1/2}$

• helicity component $\sigma_{3/2}$

МАЛІ

- 2nd resonance peak dominated by $D_{13}(1520)$ (large $A_{3/2}$ for n and p)
- 3rd peak for neutron: $D_{15}(1675)$ (similar large $A_{1/2}$, $A_{3/2}$ for n, small for p)
- 3rd peak for proton: $F_{15}(1680)$, should be dominantly $A_{3/2}$???

invariant mass distributions for $\gamma N ightarrow N \pi^o \pi^o, \sigma_{1/2}, \sigma_{3/2}$

additional asymmetries for three-particle final states

beam-helicity asymmetries - circularly polarized beam, unpolarized target

beam-helicity asym. for $\gamma N \to N \pi^o \pi^o \& \gamma N \to N \pi^o \pi^{\pm}$

M. Oberle et al., PLB 721(2013) 237, M. Oberle et al., EPJA 50 (2014) 54

$\gamma d ightarrow d\pi^0 \pi^0$ - coherent $2\pi^0$ -production off deuterons

200

100

0

(M. Günther et al., preliminary)

12

10

14 Time of Flight [ns] 40

35

30

25

20

15

10

Invariant mass

Deuteron identification

Time of Flight - Proton and Deuteron

total cross section

 σ_{tot} (W)

• structure at 2380 MeV?

nucleon resonances - total photoabsorption

• the reaction $\gamma N o X$

 no signal for higher lying resonances in nuclear excitation function but: second resonance bump has complicated structure already for nucleon • ... compared to $\gamma A \to X$

B. Krusche, 3rd Jagiellonian Symposium, Krakow, Poland, June 2019

MAM

$\gamma p \rightarrow n \pi^0 \pi^+$ - invariant mass distributions

(S. Abt, preliminary)

 $\pi^0 n$ -invariant mass $\bullet \pi^+ n$ -invariant mass $\bullet \pi^+ \pi^0$ -invariant mass

- dominant contributions from Δ -Kroll-Ruderman term at all incident energies
- significant contributions from sequential resonance decays and ρ -meson in second resonance region

resonance contributions to photoproduction of $\pi\eta$ -pairs

I. Horn et al., PRL 101 (2008) 202002; EPJA 38 (2008) 173, V. Kashevarov et al., EPJA 42 (2009) 141; PLB 693 (2010) 551

total cross section

Invariant mass distributions

FI SA

- dominant final states: $-\Delta(1232)\eta$, $-.-N(1535)\pi$, ... $pa_o(980)$
- dominant process close to threshold: $\gamma p \rightarrow D_{33}(1700) \rightarrow \eta P_{33}(1232) \rightarrow \eta \pi^o p$

isospin decomposition of $\pi\eta$ -photoproduction

(A. Käser et al., Phys. Lett. B748 (2015) 244)

total cross sections

cross section ratios

- cross section ratios agree with $\gamma N o \Delta^{\star} o \eta \Delta o \eta \pi N$ reaction chain
- invariant mass and angular distributions very similar for protons and neutrons, analysis of polarization observables under way

$\gamma N ightarrow N \pi^{o} \eta$ - helicity dependence of cross section

(A. Käser et al., PLB 786 (2018) 305)

- longitudinally polarized target, circularly polarized beam $o \sigma_{1/2}, \sigma_{3/2}$
- dominating Δ -resonances must have almost equal $A_{1/2}$, $A_{3/2}$ couplings, fits with D_{33} (1700), D_{33} (1940) states

Summary

- measurement of final states with coincident neutrons, in particular 'all neutral' final states like nπ⁰, nη, nη', nπ^oπ^o... mandatory for analysis of N* properties
- effects from Fermi motion under control via kinematic reconstruction
- effects from FSI:
 - experimental access via comparison of free and quasi-free proton results
 - development of models for FSI in progress
 - FSI effects strongly channel dependent, e.g. small/negligible for η, η' , moderate for $\pi^o \pi^o$, substantial for $\pi^o, \eta \pi$
 - for channels so far investigated FSI effects seem to be less important for polarization observables than for cross sections
- much progress with intriguing structures in $\gamma n \rightarrow n\eta$ reaction, but no final conclusions

