Recent Progress and Prospects of the LEPS2/BGOegg experiment at SPring-8

Norihito Muramatsu (ELPH, Tohoku University) 2019 June 28 (Fri) @ 3rd Jagiellonian Symposium

Introduction of Spring-8 LEPS2/BGOegg experiments

Photoproduction experiments by a Laser Compton Scattering (LCS) beam.

Baryon resonance studies via single meson photoproduction off the proton

Measurement of differential cross section & photon beam asymmetry

 \succ Studies of η' mass in nuclei

Two independent searches for medium modification & mesic nuclei

Near future Plan of BGOegg experiment

Detector upgrade & sensitivity for the η' medium modification search

SPring-8 LEPS2 Project

SPring-8 LEPS2 Project

LEPS2/BGOegg Experimental Setup

Cu : 2017 May (t1.5 mm), 2018 Jan – Feb (t7.5 mm)

> Introduction of Spring-8 LEPS2/BGOegg experiments

Baryon resonance studies via single meson photoproduction off the proton

- > Studies of η ' mass in nuclei
- > Near future Plan of BGOegg experiment
- > Summary

Single $\pi^0 / \eta / \omega$ Meson Photoproduction

The studies of excited baryon resonances are important for understanding the hadron structure which has not been well explained by the constituent quark model and the lattice QCD.

 $\succ \pi^{0}$ photoproduction : > I=1 \Rightarrow Both N^{*} and Δ^{*} contribute at s-channel.

 \Rightarrow Check of analysis method & luminosity.

Any hint for the discrepancy of CLAS & CBELSA

 $d\sigma/d\Omega$ at low energies & backward angles.

> single η / ω photoproduction : I=0 \Rightarrow Only couple with nucleon resonances (N^{*}).

The η meson couples to ss quarks.

> The N^{*}s & Δ^* s have broad widths overlapping with each other. The measurement of the **photon beam asymmetry** (Σ) in addition to the $d\sigma/d\Omega$ helps to **decompose the resonances** with the **interferences of helicity amplitudes**.

> $\sigma \propto |H_1|^2 + |H_2|^2 + |H_3|^2 + |H_4|^2$ $\Sigma \propto Re(H_1 H_4^* + H_2 H_3^*)$

The photon beam asymmetries for $E_{\gamma} \gtrsim 2$ GeV are very scarce for all modes.

Analysis Procedure

Differential Cross Section of $\gamma p \rightarrow \pi^0 p$

22 energy bins for 1300<E_ γ <2400 MeV & 17 polar angle bins for –1.0<cos θ_{π}^{CM} <0.7

Being published.

: this work (BGOegg)

□: CLAS [PRC76 (2007) 025211] ○: CBELSA [PRL94 (2005) 012003] △: CBELSA [PRC84 (2011) 055203] ◇: GRAAL [EPJA26 (2005) 399] I: LEPS [PLB657 (2007) 32] Note: The histogram indicates the systematic error of the BGOegg meas.

Typically 4-5%

Closer to the CLAS, GRAAL, and LEPS results than the CBELSA result at the backward & Low E_{γ} region.

 \Rightarrow CLAS has claimed the d σ /d Ω data can be explained by "4-star" resonance states without introducing new high spin states.

Differential Cross Section of $\gamma p \rightarrow \pi^0 p$

22 energy bins for 1300<E_{γ}<2400 MeV & **17 polar angle bins** for -1.0<cos θ_{π}^{CM} <0.7

More or less consistent with the existing PWA model calculations. ⇒ How about the photon beam asymmetry ?

 Bonn-Gatchina [https://pwa.hiskp.uni-bonn.de/ BG2014_02_obs_int.htm]
 GWU SAID [http://gwdac.phys.gwu.edu/analysis/ pr_analysis.html]
 ANL-Osaka [Private communication with Prof. Sato (Osaka Univ.)]

Photon Beam Asymmetry of $\gamma p \rightarrow \pi^0 p$

16 energy bins for 1300<E_{γ}<2400 MeV & **16 polar angle bins** for -1.0<cos θ_{π}^{CM} <0.6

Being published.

- Angular behavior similar to the other experimental results at lower energies, indicating the contribution of higher spin states.
- A wide angle measurement at E_y ≥ 2 GeV is new.

<u>Photon Beam Asymmetry of $\gamma p \rightarrow \pi^0 p$ </u>

16 energy bins for 1300<E_{γ}<2400 MeV & **16 polar angle bins** for -1.0<cos θ_{π}^{CM} <0.6

The existing PWA models deviate at the high energies where experimental data is scarce.

Comparison with PWA results at high energy region

Photon Beam Asymmetry (Σ) at 2200 < E_{γ} < 2300 GeV

●: this work (BGOegg), 🕆 : LEPS [PLB657 (2007) 32], ★ : Daresbury [NPB104(1976)253]

- SAID PWA reproduces the backward dip structure, while the middle & forward angle range can be explained only by Bonn-Gatchina PWA. The inconsistency of two PWA models tells a large ambiguity in the amplitude solution at E_y > 2 GeV.
- > The backward dip structure comes from a higher multipole amplitude (M_{5-}), which has the same quantum number as high spin resonances ($H_{19} \& H_{39}$ with $J^P=9/2^+$).

Differential Cross Section for $\gamma p \rightarrow \eta p$

20 energy bins for 1820< \sqrt{s} <2320 MeV & **16 polar angle bins** for -1.0< $\cos\theta_{\eta}^{CM}$ <0.6

 $d\sigma/d\Omega$: Closer to the CLAS result, but not well agree with the LEPS & CBELSA results at $\cos\theta > -0.7$. At the most backward region, getting closer to the CBELSA result. Variation in PWA results at backward angles because of the data inconsistencies.

Photon Beam Asymmetry for γp→ηp

10 energy bins for 1820< \sqrt{s} <2320 MeV & **8 polar angle bins** for -1.0< $\cos\theta_{\eta}^{CM}$ <0.6

 $\Sigma~$: The angle dependence is drastically changed above 1.9 GeV. Measurement above 2.12 GeV is new.

 \Rightarrow None of PWA models reproduce the BGOegg result.

Photon Beam Asymmetry for γp→ηp

10 energy bins for 1820< \sqrt{s} <2320 MeV & **8 polar angle bins** for -1.0< $\cos\theta_{\eta}^{CM}$ <0.6

$\Sigma~$: The angle dependence is drastically changed above 1.9 GeV. Measurement above 2.12 GeV is new.

 \Rightarrow None of PWA models reproduce the BGOegg result.

- > Introduction of Spring-8 LEPS2/BGOegg experiments
- Baryon resonance studies via single meson photoproduction off the proton
- > Studies of η' mass in nuclei
- > Near future Plan of BGOegg experiment
- > Summary

Studies of η' Mass in Nucleus

Large η' mass due to the $U_A(1)$ anomaly \Rightarrow A good place to examine the connection with $\langle q\bar{q} \rangle$.

η' Mass Reduction Studies at BGOegg

<u>Search for η' Mass Medium Modification</u>

Search for the medium modification signal by the fit with & without the signal function. \Rightarrow Significance will be discussed by χ^2 difference.

Smooth background

We confirmed the $\gamma\gamma$ distributions are well expressed by a smooth BG function, expressed by $exp(p_0 + p_1x + p_2x^2)$ for multiple π^0 or η photoproduction, neutral decay modes of η' , unphysical BGs, and their sum.

Quasi-free η' Photoproduction

- > The quasi-free η' peak is expressed by a Gaussian function, whose σ (mass resolution) is fixed to that from a realistic MC simulation.
- > The consistency of mass resolution between the MC simulation and the real data is very good in the tests for $\eta \rightarrow \gamma\gamma$ and $\omega \rightarrow \pi^0\gamma \rightarrow \gamma\gamma\gamma$ events.

Fitting at High Recoil Momentum Region

 $P_{n'} \ge 1000 \text{ MeV/c}$ for demonstration

Fit with BG components

 χ^2 /n.d.f. = 61.8/59 \Rightarrow No significant contribution from the medium modification signal.

The low momentum region is under investigation as a function of binding energy and width.

Signal functions for mass reduction are also ready by taking into account the Wood-Saxon type of the nuclear density distribution.

η'-mesic nuclei search

<u>Normalization by quasi-free η' photoproduction</u>

Selected $\eta' \rightarrow \gamma \gamma$ with a proton detection at RPC. Then, events at 0<MM<50 MeV was inspected because the theoretical prediction was reliable only in this region.

Normalization by quasi-free η' photoproduction

Selected $\eta' \rightarrow \gamma \gamma$ with a proton detection at RPC. Then, events at 0<MM<50 MeV was inspected because the theoretical prediction was reliable only in this region.

H. Nagahiro, JPS Conf. Proc. 13 (2017) 0100010.

Prospects for the η'-mesic nuclei search

Missing mass range	–100 <mm<0 mev<="" th=""><th>0<mm<50 mev<="" th=""></mm<50></th></mm<0>	0 <mm<50 mev<="" th=""></mm<50>
BGOegg acceptance	0.50	
Branching fraction	0.39 (η→γγ) × Br(ηp)	
V ₀ = 100 MeV	(196±53) × Br(ηp)	(204±55) × Br(ηp)

- > γp→ηp; ηp'→ηp / pp'→pp
- \succ γ**p** \rightarrow πη**p**; π**p**' \rightarrow π**p** / η**p**' \rightarrow η**p**
- > γp→ππp ; πp'→ηp
- \Rightarrow The η or p is **forward-peaked**. The latter 2 modes have **an extra** π.

Now the above kinematical cuts are being optimized.

- > Introduction of Spring-8 LEPS2/BGOegg experiments
- Baryon resonance studies via single meson photoproduction off the proton
- > Studies of η ' mass in nuclei

Near future Plan of BGOegg experiment

> Summary

Near Future Plan of BGOegg experiment

BG can be reduced to 1/10 or less. **10**⁴

Forward DC & RPC were removed for the solenoid experiment. Instead, Forward Gamma detector & Forward Plastic Scintillators have been installed. \Rightarrow A new experiment to search for the **η' mass medium modification** with a Cu target.

Prospects with 0.5X₀ Cu target

2017May : Cu 1.5 mm (0.1X₀), <1 Mcps, ~1w 2018 Jan-Feb : Cu 7.5 mm (0.5X₀), ~1 Mcps, ~4w Aiming larger statistics & a better mass resolution. c.f. 2015 Apr-July : C [20 mm (~0.1X_o)] $\sigma_{n'} \sim 20 \text{ MeV/c}^2$

Toy MC generation of quasi-free η' & polynomial BG assuming :

- (1) quasi-free η' yield of the 2017 run
- (2) 1/10 BG reduction w/ FG detector
- (3) 4 month run w/ 2 Mcps
- \Rightarrow Upper limit to observe a signal with σ ~13 MeV over the BG fluctuation.

Summary

- Activities of BGOegg collaboration so far
 - N* physics with single meson photoproduction off the proton
 Photon beam asymmetry at higher energies are especially unique.
 - Studies for η' mass reduction inside nuclei (Carbon target)

Both medium modification & mesic nuclei are searched for.

- Prospects of BGOegg experiment
 - Existing LH_2 data : η' photoproduction, double meson photoproduction
 - Cu target data w/ the new setup : Medium modification of the η' mass
 - * Data collection using a liquid deuteron target (a neutron target) is suitable with the new detector setup.
 - * If BGOegg is moved to **LEPS beamline**, further mesic nuclei searches are possible.

LEPS2/BGOegg Collaboration

ELPH, Tohoku University, Japan : Y. Honda, Y. Inoue, T. Ishikawa, S. Kido, M. Miyabe, N. Muramatsu, H. Ohnishi, M. Sasagawa, H. Shimizu, R. Shirai, K. Shiraishi, A. Tokiyasu, T. Ueda, R. Yamazaki, C. Yoshida RCNP, Osaka University, Japan : H. Goto, H. Hamano, T. Hashimoto, T. Hiraiwa, T. Hotta, H. Ikuno, Y. Kasamatsu, H. Katsuragawa, Y. Kon, Y. Matsumura, K. Mizutani, T. Nakano, T. Nam, Y. Nozawa, S.Y. Ryu, Y. Sada, Y. Sugaya, S. Tanaka, N. Tomida, Y. Yanai, T. Yorita, M. Yosoi JASRI/SPring-8, Japan : S. Date, Y. Ohashi, S. Suzuki Department of Physics, Kyoto Sangyo University, Japan : M. Niiyama, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Japan : K. Ozawa Department of Physics, University of Tokyo, Japan : S. Masumoto, T. Shibukawa Department of Physics, Nagoya University, Japan : Y. Tsuchikawa Radiation Science Center, High Energy Accelerator Research Organization (KEK), Japan : H. Yamazaki Department of Radiology, The University of Tokyo Hospital, Japan : T. Ohta Department of Physics, Kyoto University, Japan : T. Gogami Department of Education, Gifu University, Japan : T. Nakamura, M. Sumihama Department of Physics, Korea University, Republic of Korea : J.K. Ahn, J.M. Jo Institute of Physics, Academia Sinica, Taiwan : W.C. Chang, M.L. Chu National Synchrotron Radiation Research Center, Taiwan : J.Y. Chen Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, China : Q.H. He **Department of Physics and Astronomy, Ohio University, USA : K. Hicks** Department of Physics and Astronomy, University of Florida, USA : I. Jaegle Nuclear Physics Department, Univ. of Science, Vietnam National University, Ho Chi Minh City, Vietnam : T.N.T. Ngan Department of Physics and Engineering Physics, University of Saskatchewan, Canada : C. Rangacharyulu Joint Institute for Nuclear Research, Dubna, Russia : E.A. Strokovsky