Biological dose calculations with variable RBE for proton therapy using Monte Carlo code FRED

J. Gajewski¹, M. Garbacz¹, L. Grzanka¹, G. Battistoni³, M. Durante⁴, D. Kabat⁹, N. Krah⁵, K. Krzempek¹, V. Patera⁶, M. Pawlik-Niedźwiecka^{1,2}, E. Pluta⁹, I. Rinaldi⁷, E. Scifoni⁴, T. Skóra⁹, A. Skrzypek¹, F. Tommasino⁸, A. Schiavi⁶, A. Ruciński¹

3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics Kraków, 2019

Jan Gajewski

Photon vs proton therapy

Jan Gajewski

Biological effects – photon therapy

Photon therapy TCP/NTCP depends on D_{phys} TCP – Tumor Control Probability

NTCP – Normal Tissue Complication Probability

Jan Gajewski

Biological effects – proton therapy

Photon therapy TCP/NTCP depends on D_{phys} Proton therapy TCP/NTCP depends on D_{biol} $D_{biol} = D_{phys} \cdot RBE$ TCP – Tumor Control Probability

NTCP – Normal Tissue Complication Probability

RBE – Relative Biological Effectiveness

Jan Gajewski

Biological effects – proton therapy

Photon therapy TCP/NTCP depends on D_{phys} Proton therapy TCP/NTCP depends on D_{biol} $D_{biol} = D_{phys} \cdot RBE$ TCP – Tumor Control Probability

NTCP – Normal Tissue Complication Probability

RBE – Relative Biological Effectiveness

Jan Gajewski

Biological effects – proton therapy

Photon therapy TCP/NTCP depends on D_{phys} Proton therapy TCP/NTCP depends on D_{biol} $D_{biol} = D_{phys} \cdot RBE$

RBE depends on:

- dose/fractionation scheme
- tissue type (α/β)
- beam quality (LET, particle type)
- dose rate (FLASH)

Bilogical dose - presentation outline

Physics modeling:

- proton beam model
- CT calibration
- Experimental validation

 $D_{biol} = D_{phys} \cdot RBE$

RBE modeling:

- tissue type (α/β)
- LET calculation
- Variable RBE model

Fast paRticle thErapy Dose evaluator – FRED

- 2nd class Monte Carlo code (A. Schiavi et al., 2017):
 - condensed history for continuous processes
 - single steps for nuclear events
- Flexible geometry and CT import
- Various RBE models
- GPU and CPU calculations
- Tracking rate: 3-10E6 proton/s
- Single beam in water 1E7 protons 30s
- Treatment plan in CT ~ 4 min

Jan Gajewski

Bronowice Cyclotron Centre (CCB)

Jan Gajewski

Beam Model in FRED

Beam model based on commissioning data (integrated depth dose and lateral beam shape) 17 energies in range 70 – 225 MeV

Jan Gajewski

Beam Model in FRED – 150 MeV example

Range agreement (R_{80%}) <0.1mm (dose agreement <2%) Range shifter WET agrees with measurement ±0.03mm Spot sizes in air agree within ±0.2mm

Spot sizes in air agree within ±0.2mm

Validation in water

Dose agreement in SOBP <2%

Gamma index passing rate for 182 simulated and measured layers was 97.9%

CT calibration

Jan Gajewski

Validation in heterogeneous media

- Heterogeneous head phantom
- MatriXX measurement in water
- Single energy: 100, 150 and 200 MeV
- Range shifter

3D Gamma index (2mm/2%) passing rate for all measurements >99%

FRED - biological dose with variable RBE

Function of LET

$$RBE\left(D_{p},\frac{\alpha_{p}}{\alpha_{x}},\frac{\beta_{p}}{\beta_{x}},\left(\frac{\alpha}{\beta}\right)_{x}\right) = \frac{D_{x}}{D_{p}} = \frac{\sqrt{\left(\frac{\alpha}{\beta}\right)_{x}^{2} + 4\frac{\alpha_{p}}{\alpha_{x}}\left(\frac{\alpha}{\beta}\right)_{x}D_{p} + 4\frac{\beta_{p}}{\beta_{x}}D_{p}^{2} - \left(\frac{\alpha}{\beta}\right)_{x}}{2D_{p}}$$

 D_p causes the same biological effect as D_x

Jan Gajewski

Variable RBE models:

Wedenberg (Wedenberg et al., 2013) Wilkens (Wilkens and Oelfke, 2004) Chen (Chen and Ahmad, 2012) Carabe (Carabe at al., 2012) McNamara (McNamara at al., 2015) ... and other

FRED - biological dose with variable RBE

Function of LET

$$RBE\left(D_{p},\frac{\alpha_{p}}{\alpha_{x}},\frac{\beta_{p}}{\beta_{x}},\left(\frac{\alpha}{\beta}\right)_{x}\right) = \frac{D_{x}}{D_{p}} = \frac{\sqrt{\left(\frac{\alpha}{\beta}\right)_{x}^{2} + 4\frac{\alpha_{p}}{\alpha_{x}}\left(\frac{\alpha}{\beta}\right)_{x}D_{p} + 4\frac{\beta_{p}}{\beta_{x}}D_{p}^{2} - \left(\frac{\alpha}{\beta}\right)_{x}}{2D_{p}}$$

D_p causes the same biological effect as D_x

Jan Gajewski

Physical dose

Wedenberg

Carabe

Wilkens

Jan Gajewski

FRED dLET validation

Dose-averaged LET validated against TOPAS calculations

dLET in agreement with TOPAS MC

Jan Gajewski

FRED - biological dose with variable RBE

Biological dose with Carabe RBE model comparable with literature

Jan Gajewski

Variable RBE - case study

Jan Gajewski

Variable RBE - case study

Jan Gajewski

Variable RBE - case study

Dose TPS (RBE=1.1)

dLET

Jan Gajewski

Variable RBE - case study

Dose TPS (RBE=1.1)

dLET

RBE Carabe

Jan Gajewski

Variable RBE - case study

dLET

RBE Carabe

Jan Gajewski

Variable RBE - case study

DVH for brain stem

Jan Gajewski

Variable RBE – 10 patients

10 Head&Neck patients treated as CCB

ΡΤΥ	RBE=1.1	Carabe RBE	Brain stem	RBE=1.1	Carabe RBE
D _{mean}	100.1% (0.0%)	107.9% (0.8%)	D _{max}	52.2Gy (1.6Gy)	59.4Gy (1.8Gy)
HI _{D5D95}	6.0% (0.4%)	9.4% (0.5%)	D ₀₂	50.8Gy (1.8Gy)	55.6Gy (2.1Gy)

PTV D_{mean} up to ~8% higher that prescribed dose OAR (brain stem) D_{max} up to 7.2Gy higher than calculated in TPS

4

Conclusions

- Fast and automatic beam model preparation for FRED MC (requires only commissioning measurements data)
- Beam model validated experimentally in homogeneous and heterogeneous media
- Routine for biological dose calculations for patient treatment plans
- Current Activities:
 - Simple interface FRED ↔ TPS ECLIPSE
 - Further dLET validation
 - Experimental validation of beam size and dLET in water
 - Analysis of biological dose with variable RBE for 100 patients