Revision of $\mathrm{K}^{-3} \mathrm{He}->\wedge \mathrm{pn}$ and the $\mathrm{K}^{-} \mathrm{pp}$ bound state. Recent Ω_{c} and Pentaquark states
E. Oset, T. Sekihara, A. Ramos, V. R. Debastiani, F. M. Dias, W. H. Liang, C.W. Xiao, J. Nieves IFIC, Universidad de Valencia

The $\mathrm{K}^{-}{ }^{3} \mathrm{He}->\Lambda \mathrm{p}$ n reaction and the $\mathrm{K}^{-} \mathrm{pp}$ bound state revisited Ω_{c} states

New pentaquarks in the

$$
\Lambda_{b} \rightarrow J / \psi p K^{-} \quad \text { reaction }
$$

T. Sekihara, E. Oset, A. Ramos PTEP (2016)

Kaon rescattering
from the chiral unitary approach

$M_{\Lambda p}[\mathrm{GeV}]$

Y. Sada et al. [J-PARC E15 Collaboration], Prog. Theor. Exp. Phys. 2016, 051D01 (2016)

Novelty: In the previous work T_{1} was parametrized as a real amplitude taken at $k_{\text {lab }}=1 \mathrm{GeV}$, neglecting Fermi motion of the nucleons. Now Fermi motion is considered and we take a more complete amplitude

$$
\begin{aligned}
& T_{1}\left(w_{1}, \boldsymbol{p}_{\mathrm{out}}, \boldsymbol{p}_{\mathrm{in}}\right)=g\left(w_{1}, p_{\mathrm{out}}, p_{\mathrm{in}}, x\right)-i h\left(w_{1}, p_{\mathrm{out}}, p_{\mathrm{in}}, x\right) \frac{\left(\boldsymbol{p}_{\mathrm{out}} \times \boldsymbol{p}_{\mathrm{in}}\right) \cdot \boldsymbol{\sigma}}{p_{\mathrm{out}} p_{\mathrm{in}}} \\
& g\left(w, p_{\mathrm{out}}, p_{\mathrm{in}}, x\right)=\sum_{L=0}^{\infty}\left[(L+1) T_{L+}\left(w, p_{\mathrm{out}}, p_{\text {in }}\right)+L T_{L-}\left(w, p_{\mathrm{out}}, p_{\mathrm{in}}\right)\right] P_{L}(x) \\
& h\left(w, p_{\mathrm{out}}, p_{\mathrm{in}}, x\right)=\sum_{L=1}^{\infty}\left[T_{L+}\left(w, p_{\mathrm{out}}, p_{\text {in }}\right)-T_{L-}\left(w, p_{\mathrm{out}}, p_{\text {in }}\right)\right] P_{L}^{\prime}(x)
\end{aligned}
$$

T_{L} is taken up to $L=4$ from
[11] H. Kamano, S. X. Nakamura, T.-S. H. Lee and T. Sato, Phys. Rev. C 90, 065204 (2014).
based on dynamical coupled channels with $\operatorname{SU}(3)$ phenomenological Lagrangians

Fig. 3. Comparison between theoretical and experimental results of the Λp invariant mass spectrum $d \sigma / d M_{\Lambda p}$ for the $K^{-3} \mathrm{He} \rightarrow \Lambda p n$ reaction in the momentum transfer window $350 \mathrm{MeV} / c<q_{\Lambda p}<650 \mathrm{MeV} / c$. For the experimental data we subtract the background contribution in the experimental analysis [9].
[9] S. Ajimura et al. [J-PARC E15 Collaboration], Phys. Lett. B 789, 620 (2019).

The low energy amplitudes of the kaons are the same, based on the chiral unitary approach, which lead to a K-pp bound state of about 20 Mev and width of about 80 MeV .

Molecular Ω_{c} states generated from coupled meson-baryon channels
V. R. Debastiani, ${ }^{1, *}$ J. M. Dias, ${ }^{1,2, \dagger}$ W. H. Liang, ${ }^{3, \ddagger}$ and E. Oset ${ }^{1, \S}$ PRD (2018)

The $\Xi_{c} \mathrm{~K}^{-}$mass spectrum is studied with a sample of pp collision data by LHCb , PRL 017

Five clean narrow peaks are obtained

$$
\begin{gathered}
\Omega_{c}(3000)^{0}, \Omega_{c}(3050)^{0}, \Omega_{c}(3066)^{0} \\
\Omega_{c}(3090)^{0}, \text { and } \Omega_{c}(3119)^{0}
\end{gathered}
$$

Resonance	Mass (MeV)	$\Gamma(\mathrm{MeV})$
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1_{-0.5}^{+0.3}$	$4.5 \pm 0.6 \pm 0.3$
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1_{-0.5}^{+0.3}$	$0.8 \pm 0.2 \pm 0.1$
		$<1.2 \mathrm{MeV}, 95 \% \mathrm{C} . \mathrm{L}$.
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3_{-0.5}^{+0.3}$	$3.5 \pm 0.4 \pm 0.2$
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5_{-0.5}^{+0.3}$	$8.7 \pm 1.0 \pm 0.8$
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9_{-0.5}^{+0.3}$	$1.1 \pm 0.8 \pm 0.4$
		$<2.6 \mathrm{MeV} .95 \% \mathrm{C} . \mathrm{L}$.

Chiral Lagrangian $\quad \mathcal{L}^{B}=\frac{1}{4 f_{\pi}^{2}}\left\langle\bar{B} i \gamma^{\mu}\left[\left(\Phi \partial_{\mu} \Phi-\partial_{\mu} \Phi \Phi\right) B-B\left(\Phi \partial_{\mu} \Phi-\partial_{\mu} \Phi \Phi\right)\right]\right\rangle$
Equivalent method: Local hidden gauge approach

$$
\begin{array}{cc}
\Phi=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta
\end{array}\right) & B=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & n \\
\Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}} \Lambda
\end{array}\right) \\
V_{\mu}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & \rho^{+} & K^{*+} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & K^{* 0} \\
K^{*-} & \bar{K}^{* 0} & \phi
\end{array}\right)_{\mu}
\end{array}
$$

(a)

(b)

$$
\begin{array}{ll}
\rho^{0}=\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}), & \text { approximation of taking } \gamma^{\mu} \rightarrow \gamma^{0} \\
\omega=\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}), & \langle p| g \rho^{0}|p\rangle \equiv \\
\begin{array}{ll}
=s \bar{s} . & \left.\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left\langle\phi_{\mathrm{MS}} \chi_{\mathrm{MS}}+\phi_{\mathrm{MA}} \chi_{\mathrm{MA}}\right| g \frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \right\rvert\, \\
& \left.\times \phi_{\mathrm{MS}} \chi_{\mathrm{MS}}+\phi_{\mathrm{MA}} \chi_{\mathrm{MA}}\right\rangle,
\end{array}
\end{array}
$$

TABLE I. $\quad J=1 / 2$ states chosen and threshold mass in MeV .

States	$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD	$\Omega_{c} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi_{c}^{\prime} \bar{K}^{*}$
Threshold	2965	3074	3185	3243	3327	3363	3472

TABLE II. $\quad J=3 / 2$ states chosen and threshold mass in MeV .

States	$\Xi_{c}^{*} \bar{K}$	$\Omega_{c}^{*} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi^{*} D$	$\Xi_{c}^{\prime} \bar{K}^{*}$
Threshold	3142	3314	3327	3363	3401	3472

Back to Ω_{c} states

BARYON WAVE FUNCTIONS

$\Xi_{c}^{+}: \frac{1}{\sqrt{2}} c(u s-s u)$, and the spin wave function is the mixed antisymmetric, χ_{MA}, for the two light quarks. Ξ_{c}^{0} : the same as Ξ_{c}^{+}, changing $(u s-s u) \rightarrow$ $(d s-s d)$.
$\dot{\Xi}_{c}^{\prime+}: \frac{1}{\sqrt{2}} c(u s+s u)$, and now the spin wave function for the three quarks is the mixed symmetric, χ_{MS}, in the last two quarks,
$\Xi_{c}^{\prime 0}$: the same as Ξ_{c}^{\prime}, changing $(u s+s u) \rightarrow$ $(d s+s d)$.
$\Omega_{c}^{0}: c s s$, and the spin wave function χ_{MS} in the last two quarks, like that for Ξ_{c}^{\prime}.

FIG. 3. Diagrams in the $\bar{K} \Xi_{c} \rightarrow \bar{K} \Xi_{c}$ transition.

$$
\begin{aligned}
& g=m_{v} / 2 \mathrm{f} \\
& \mathrm{f}=93 \mathrm{MeV}
\end{aligned}
$$

Lower vertex $\quad \frac{1}{\sqrt{2}}\langle(u s-s u)|\left(\begin{array}{c}g \frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \\ g \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \\ g s \bar{s}\end{array}\right)\left|\frac{1}{\sqrt{2}}(u s-s u)\right\rangle$

$$
=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} g \\
\frac{1}{\sqrt{2}} g \\
g
\end{array}\right)
$$

No need to invoke SU(4)

With light vector exchange the heavy quarks are spectators. Nothing depends upon them. Heavy quark symmetry is automatically implemented

$$
T=[1-V G]^{-1} V . \quad G_{l}^{I I}=G_{l}^{I}+i \frac{2 M_{l} q}{4 \pi \sqrt{s}}, \quad T_{i j}=\frac{g_{i} g_{j}}{\sqrt{s}-z_{R}}
$$

$\operatorname{Exp}(\mathrm{MeV})$ M L	TABLE VI. The coupling constants to various channels for the poles in the $J^{P}=1 / 2^{-}$sector, with $q_{\max }=650 \mathrm{MeV}$, and $g_{i} G_{i}^{I I}$ in MeV.							
3050, 0.8	$\underline{3054.05+i 0.44}$	$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD	$\Omega_{c} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi_{c}^{\prime} \bar{K}^{*}$
	g_{i}	$-0.06+i 0.14$	$1.94+i 0.01$	$-2.14+i 0.26$	$1.98+i 0.01$	0	0	0
	$g_{i} G_{i}^{I I}$	$-1.40-i 3.85$	-34.41-i0.30	$9.33-i 1.10$	-16.81-i0.11	0	0	0
3090, 8.7	3091.28+i5.12	$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD	$\Omega_{c} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi_{c}^{\prime} \bar{K}^{*}$
	$\begin{aligned} & g_{i} \\ & g_{i} G_{i}^{I I} \\ & \hline \end{aligned}$	0.18-i0.37	$0.31+i 0.25$	5.83-i0.20	$0.38+i 0.23$	0	0	0
		$5.05+i 10.19$	-9.97-i3.67	$-29.82+i 0.31$	$-3.59-i 2.23$	0	0	0

TABLE VIII. The coupling constants to various channels for the poles in the $J^{P}=3 / 2^{-}$sector, with $q_{\text {max }}=650 \mathrm{MeV}$, and $g_{i} G_{i}^{I I}$ in MeV .

3119, 1.1

We get three states in very good agreement with experiment, both mass and width

Related work:
[15] J. Hofmann and M.F. M. Lutz, Nucl. Phys. A763, 90 (2005).
[16] C. E. Jimenez-Tejero, A. Ramos, and I. Vidana, Phys. Rev. C 80, 055206 (2009).
[17] O. Romanets, L. Tolos, C. Garcia-Recio, J. Nieves, L. L. Salcedo, and R. G. E. Timmermans, Phys. Rev. D 85, 114032 (2012).

Revisions made after experiment to fit some parameter
[41] G. Montaña, A. Feijoo, and A. Ramos, Eur. Phys. J. A 54, 64 (2018).

Uses SU(4) : matrix elements exchanging light vectors are equal. Results similar to ours, but only two states, since they study $1 / 2^{-}$states only
J. \sim Nieves, R. \sim Pavao and L. \sim Tolos, Omega _c excited states within a SU(6)\}_ HQSS model, Eur. Phys. J. C 78114 (2018)

Better results than in [17] but the widths and the positions not so good as in the works of Montaña and present work .

Run 1 evidence for $P_{c}^{+} \rightarrow J / \psi p$ pentaquarks in $\Lambda_{b} \rightarrow J / \psi p K^{-}$

PRL 115, 072001 (2015)

Amplitude model fit to $m_{J / \psi p}[\mathrm{GeV}]$ masses and decay angles

$$
\begin{array}{ccc}
\mathrm{P}_{\mathrm{c}}(4450)^{+} & M & M 450 \pm 2 \pm 3 \mathrm{MeV} \\
& \Gamma & 39 \pm 5 \pm 19 \mathrm{MeV} \\
& F . F= & 4.1 \pm 0.5 \pm 1.1 \% \\
\mathrm{P}_{\mathrm{c}}(4380)^{+} & M & \\
& & 4380 \pm 8 \pm 29 \mathrm{MeV} \\
& \Gamma= & 205 \pm 18 \pm 86 \mathrm{MeV} \\
& F . F . & \\
& 8.4 \pm 0.7 \pm 4.2 \%
\end{array}
$$

$$
\begin{gathered}
27 \mathrm{k} \Lambda_{b} \rightarrow J / \psi p K^{-} \text {signal events } \\
5.4 \% \text { background }
\end{gathered}
$$

Decay by fall-apart:

- Wide states?
- What slows it down to make $P_{c}(4450)^{+}$narrow? L between diaquarks?
- $P_{c}(4380)^{+} S=1, L=0$ broad, $P_{c}(4450)^{+} S=0, L=1$ narrow
- Spectrum (confining potential)
- Many states expected (n, L, S)
L. Maiani, A. D. Polosa, V. Riquer, PL B749 (2015) 289 R. F. Lebed, PL, B749 (2015) 454
V.V. Anisovich, M.A. Matveev, J. Nyiri, A.V. Sarantsev PL,. B749 (2015) 454 and others

Loosely-bound pentaquark

- Decay by heavy quarks changing confinement partners, then fall-apart:

Wu,Molina,Oset,Zou,
PRL105 (2010) 232001
Wang, Huang,Zhang,Zou, PR C84 (2011) 015203 Karliner,Rosner, PRL 115 Karliner,Rosner
(2015) 122001 and others

- $n=0, \mathrm{~L}=0$ between hadron
- Very few states expected (S)
- Weak binding: masses a few MeV below the related baryon-meson thresholds
Only $\Sigma_{c}^{+} \bar{D}^{(*) 0}$ expected to bind:
$-\mathrm{P}_{\mathrm{c}}(4450)^{+}=\Sigma_{c}^{+} \bar{D}^{* 0}$ molecule?
- Peaking at $\Lambda_{c}^{+} \bar{D}^{(*) 0}, \chi_{c J} p$ thresholds possible from triangle diagram processes:
$-\mathrm{P}_{\mathrm{c}}(4450)^{+}=\chi_{c 1} p$ threshold?
Guo,Meissner,Wang,Yang, PRD92 (2015) 071502

Plausible theoretical interpretation

Existence of $\sum_{c}^{+} \bar{D}^{0}$ molecule would imply importance of ρ-exchange substructure!

LHCb-PAPER-2019-014 in preparation are expected in this mass range

The near-threshold masses and the narrow widths of $P_{c}(4312)^{+}, P_{c}(4440)^{+}$and $P_{c}(4457)^{+}$
favor "molecular" pentaquarks with meson-baryon

$\rightarrow J / \psi(c \bar{c}) p(u u d)$ easier (P_{c}^{+}wider)
Can diquark substructure separated by a potential barrier [Maiani,
Polosa, Riquer, PL,B778, 247
(2018)] produce width
suppression?
Are masses near thresholds just by coincidence?
This hypothesis is not ruled out

Heavy quark spin symmetric molecular states from $\bar{D}^{(*)} \Sigma_{c}^{(*)}$ and other coupled channels in the light of the recent LHCb pentaquarks

$$
\begin{gathered}
\text { C. W. Xiao, }{ }^{1} \text { J. Nieves, }{ }^{2} \text { and E. Oset2,3 PRD (2019) } \\
I=1 / 2, \eta_{c} N, J / \psi N, \bar{D} \Lambda_{c}, \bar{D} \Sigma_{c}, \bar{D}^{*} \dot{\Lambda}_{c}, \bar{D}^{*} \Sigma_{c}^{*}, \bar{D}^{*} \Sigma_{c}^{*} \text { for spin parity } J^{P}=1 / 2^{-} \\
J / \psi N, \bar{D}^{*} \Lambda_{c}, \bar{D}^{*} \Sigma_{c}, \bar{D} \Sigma_{c}^{*}, \bar{D}^{*} \Sigma_{c}^{*} \text { for } J^{P}=3 / 2^{-} \\
T=[1-V G]^{-1} V
\end{gathered}
$$

HQSS tells that the interaction cannot depend on the spin of the heavy quarks. Then one rewrites the physical states in terms of a basis of states where the spin of the light quarks and the heavy ones are separated. This produces symmetries in the matrix elements of the interaction.

- $J=1 / 2, I=1 / 2$

$$
\begin{aligned}
& \begin{array}{llllll}
\eta_{c} N & J / \psi N & \bar{D} \Lambda_{c} & \bar{D} \Sigma_{c} & \bar{D}^{*} \Lambda_{c} & \bar{D}^{*} \Sigma_{c}
\end{array} \bar{D}^{*} \Sigma_{c}^{*} \\
& \left(\begin{array}{ccccccc}
\mu_{1} & 0 & \frac{\mu_{12}}{2} & \frac{\mu_{13}}{2} & \frac{\sqrt{3} \mu_{12}}{2} & -\frac{\mu_{13}}{2 \sqrt{3}} & \sqrt{\frac{2}{3}} \mu_{13} \\
0 & \mu_{1} & \frac{\sqrt{3} \mu_{12}}{2} & -\frac{\mu_{13}}{2 \sqrt{3}} & -\frac{\mu_{12}}{2} & \frac{5 \mu_{13}}{6} & \frac{\sqrt{2} \mu_{13}}{3}
\end{array}\right. \\
& \begin{array}{lllllll}
\frac{\mu_{12}}{2} & \frac{\sqrt{3} \mu_{12}}{2} & \mu_{2} & 0 & 0 & \frac{\mu_{23}}{\sqrt{3}} & \sqrt{\frac{2}{3}} \mu_{23}
\end{array} \\
& \begin{array}{llllll}
\frac{\mu_{13}}{2} & -\frac{\mu_{13}}{2 \sqrt{3}} & 0 & \frac{1}{3}\left(2 \lambda_{2}+\mu_{3}\right) & \frac{\mu_{23}}{\sqrt{3}} & \frac{2\left(\lambda_{2}-\mu_{3}\right)}{3 \sqrt{3}}
\end{array} \frac{1}{3} \sqrt{\frac{2}{3}}\left(\mu_{3}-\lambda_{2}\right) \\
& \begin{array}{lllllll}
\frac{\sqrt{3} \mu_{12}}{2} & -\frac{\mu_{12}}{2} & 0 & \frac{\mu_{23}}{\sqrt{3}} & \mu_{2} & -\frac{2 \mu_{23}}{3} & \frac{\sqrt{2} \mu_{23}}{3}
\end{array} \\
& -\frac{\mu_{13}}{2 \sqrt{3}} \quad \frac{5 \mu_{13}}{6} \quad \frac{\mu_{23}}{\sqrt{3}} \quad \frac{2\left(\lambda_{2}-\mu_{3}\right)}{3 \sqrt{3}} \quad-\frac{2 \mu_{23}}{3} \quad \frac{1}{9}\left(2 \lambda_{2}+7 \mu_{3}\right) \quad \frac{1}{9} \sqrt{2}\left(\mu_{3}-\lambda_{2}\right) \\
& \left(\begin{array}{lllll}
\sqrt{\frac{2}{3}} \mu_{13} & \frac{\sqrt{2} \mu_{13}}{3} & \sqrt{\frac{2}{3}} \mu_{23} & \frac{1}{3} \sqrt{\frac{2}{3}}\left(\mu_{3}-\lambda_{2}\right) & \frac{\sqrt{2} \mu_{23}}{3} \\
\frac{1}{9} \sqrt{2}\left(\mu_{3}-\lambda_{2}\right) & \frac{1}{9}\left(\lambda_{2}+8 \mu_{3}\right)
\end{array}\right)
\end{aligned}
$$

- $J=3 / 2, I=1 / 2$

$$
\begin{aligned}
& J / \psi N \bar{D}^{*} \Lambda_{c} \quad \bar{D}^{*} \Sigma_{c} \quad \bar{D} \Sigma_{c}^{*} \quad \bar{D}^{*} \Sigma_{c}^{*} \\
& \left(\begin{array}{lllll}
\mu_{1} & \mu_{12} & \frac{\mu_{13}}{3} & -\frac{\mu_{13}}{\sqrt{3}} & \frac{\sqrt{5} \mu_{13}}{3} \\
\mu_{12} & \mu_{2} & \frac{\mu_{23}}{3} & -\frac{\mu_{23}}{\sqrt{3}} & \frac{\sqrt{5} \mu_{23}}{3}
\end{array}\right. \\
& \begin{array}{cccc}
\frac{\mu_{13}}{3} & \frac{\mu_{23}}{3} & \frac{1}{9}\left(8 \lambda_{2}+\mu_{3}\right) & \frac{\lambda_{2}-\mu_{3}}{3 \sqrt{3}}
\end{array} \frac{1}{9} \sqrt{5}\left(\mu_{3}-\lambda_{2}\right) \\
& -\frac{\mu_{13}}{\sqrt{3}}-\frac{\mu_{23}}{\sqrt{3}} \quad \frac{\lambda_{2}-\mu_{3}}{3 \sqrt{3}} \quad \frac{1}{3}\left(2 \lambda_{2}+\mu_{3}\right) \quad \frac{1}{3} \sqrt{\frac{5}{3}}\left(\lambda_{2}-\mu_{3}\right) \\
& \left(\frac{\sqrt{5} \mu_{13}}{3} \frac{\sqrt{5} \mu_{23}}{3} \frac{1}{9} \sqrt{5}\left(\mu_{3}-\lambda_{2}\right) \frac{1}{3} \sqrt{\frac{5}{3}}\left(\lambda_{2}-\mu_{3}\right) \frac{1}{9}\left(4 \lambda_{2}+5 \mu_{3}\right)\right)_{I=1 / 2}
\end{aligned}
$$

- $J=5 / 2, I=1 / 2$

$$
\bar{D}^{*} \Sigma_{c}^{*}:\left(\lambda_{2}\right)_{I=1 / 2}
$$

The different terms are evaluated using an extensión of the local hidden gauge approach, with the exchange of vector mesons.

$$
\begin{aligned}
\mu_{1} & =0, \quad \mu_{23}=0, \quad \lambda_{2}=\mu_{3}, \quad \mu_{13}=-\mu_{12} \\
\mu_{2} & =\frac{1}{4 f^{2}}\left(k^{0}+k^{\prime 0}\right), \quad \mu_{3}=-\frac{1}{4 f^{2}}\left(k^{0}+k^{00}\right) \\
\mu_{12} & =-\sqrt{6} \frac{m_{\rho}^{2}}{p_{D^{*}}^{2}-m_{D^{*}}^{2}} \frac{1}{4 f^{2}}\left(k^{0}+k^{0}\right)
\end{aligned}
$$

$f=f_{\pi}=93 \mathrm{MeV}, k^{0}, k^{\prime 0}$ are the energies of the external mesons

The only free parameter is the subtraction constant in the regularization of the meson baryon loops. We take it such that the average mass of our states agrees with experiment.

TABLE I. Dimensionless coupling constants of the $\left(I=1 / 2, J^{P}=1 / 2^{-}\right)$poles found in this work to the different channels.

$(4306.38+i 7.62) \mathrm{MeV}$							
	$\eta_{c} N$	$J / \psi N$	$\bar{D} \Lambda_{c}$	$\bar{D} \Sigma_{c}$	$\bar{D}^{*} \Lambda_{c}$	$\bar{D}^{*} \Sigma_{c}$	$\bar{D}^{*} \Sigma_{c}^{*}$
g_{i}	$0.67+i 0.01$	$0.46-i 0.03$	$0.01-i 0.01$	$2.07-\mathrm{i} 0.28$	$0.03+i 0.25$	$0.06-i 0.31$	$0.04-i 0.15$
$\left\|g_{i}\right\|$	0.67	0.46	0.01	2.09	0.25	0.31	0.16
$(4452.96+i 11.72) \mathrm{MeV}$							
	$\eta_{c} N$	$J / \psi N$	$\bar{D} \Lambda_{c}$	$\bar{D} \Sigma_{c}$	$\bar{D}^{*} \Lambda_{c}$	$\bar{D}^{*} \Sigma_{c}$	$\bar{D}^{*} \Sigma_{c}^{*}$
g_{i}	$0.24+i 0.03$	$0.88-0.11$	$0.09-i 0.06$	$0.12-i 0.02$	$0.11-i 0.09$	$1.97-\mathrm{i} 0.52$	$0.02+i 0.19$
$\left\|g_{i}\right\|$	0.25	0.89	0.11	0.13	0.14	2.03	0.19
$(4520.45+i 11.12) \mathrm{MeV}$							
g_{i}	$0.72-i 0.10$	$0.45-i 0.04$	$0.11-i 0.06$	$0.06-i 0.02$	$0.06-i 0.05$	$0.07-i 0.02$	$1.84-\mathrm{i} 0.56$
$\left\|g_{i}\right\|$	0.73	0.45	0.13	0.06	0.08	0.08	1.92

TABLE II. Same as Table I for $J^{P}=3 / 2^{-}$.

TABLE III. Identification of some of the $I=1 / 2$ resonances found in this work with experimental states.

Mass $[\mathrm{MeV}]$	Width $[\mathrm{MeV}]$	Main channel	J^{P}	Experimental state
4306.4	15.2	$\bar{D} \Sigma_{c}$	$1 / 2^{-}$	$P_{c}(4312)$
4453.0	23.4	$\bar{D}^{*} \Sigma_{c}$	$1 / 2^{-}$	$P_{c}(4440)$
4452.5	3.0	$\bar{D}^{*} \Sigma_{c}$	$3 / 2^{-}$	$P_{c}(4457)$

M.Z. Liu, Y.W. Pang, F.Z. Peng, M. Sanchez-Sanchez, L.S. Geng, A. Hosaka, M. Pavon-Valderrama Arxiv 1903.11560, PRL 2019

Similar conclusions based on single channels.

Conclusions

Improvements on the $\mathrm{K}^{-3} \mathrm{He}->\wedge \mathrm{pn}$, adjusting to the experimental cuts, lead to a very good agreement with experiment. Results compatible with small binding of the $\mathrm{K}^{-} p p$ system

Extension of chiral unitary theory to the heavy sector, using the exchange of vectors in the hidden gauge approach, together with unitarity in coupled channels leads to neat predictions for molecular states

Recent results for Ω_{c} states and the new pentaquarks states of hidden charm, are giving support to these molecular pictures.

