

The antikaon deuterium experiment at J-PARC studying strong interaction

Johann Zmeskal for the E57 Collaboration

3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics

> Jagiellonian University, Krakow June 24-28, 2019

Motivation

- □ exotic hadronic atoms are bound by the Coulomb force QED
- **D** e.g. $\pi^+\pi^-$, π^-p , π^-d , K^-p , K^-d , ...
- □ Bohr radii >> as the typical scale of strong interaction
- □ observable effects of QCD
 - energy shift ε from pure Coulomb value
 - decay width
 - > access to scattering at zero energy
- □ these scattering lengths are sensitive to chiral and isospin symmetry breaking in QCD
- □ can be analysed systematically in the framework of low-energy Effective Field Theory

The scientific goal of E57 at J-PARC

To perform a precision measurement of **kaonic deuterium X-ray transitions**

- unique information about QCD in the non-perturbative regime in the strangeness sector, not obtainable otherwise
- > the measurement of kaonic deuterium

will allow to extract the antikaon-nucleon isospin dependent scattering lengths \rightarrow kaon-neutron scattering

$$a_{K^{-}p} = \frac{1}{2} [a_0 + a_1]$$
$$a_{K^{-}n} = a_1$$

$$\begin{vmatrix} a_{K^{-}d} &= \frac{k}{2} \Big[a_{K^{-}p} + a_{K^{-}n} \Big] + C = \frac{k}{4} \Big[a_0 + 3a_1 \Big] + C \\ k &= \frac{4 \Big[m_n + m_K \Big]}{\Big[2m_n + m_K \Big]} \end{vmatrix}$$

chiral symmetry breaking (mass problem)EOS for neutron stars

Forming "exotic" atoms

Cascade Processes

Improved constraints on chiral SU(3) dynamics from kaonic hydrogen Y. Ikeda, T. Hyodo and W. Weise, PLB 706 (2011) 63

Real part (left) and imaginary part (right) of the $K^-p \rightarrow K^-p$ forward scattering amplitude extrapolated to the subthreshold region, deduced from the SIDDHARTA kaonic hydrogen measurement. 3rd Jagiellonian Symposium 2019, Krakow

Chirally motivated K⁻N approaches

- Kyoto-Munich (KM) Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881 (2012) 98
- Murcia (M₁, M₁₁)
 Z. H. Guo, J. A. Oller, Phys. Rev. C 87 (2013) 035202
- Bonn (B₂, B₄)
 M. Mai, U.-G. Meißner Eur. Phys. J. A 51 (2015) 30
- Prague (P)
 A. C., J. Smejkal, Nucl. Phys. A 881 (2012) 115
- Barcelona (BCN)
 A. Feijoo, V. Magas, À. Ramos, Phys. Rev. C 99 (2019) 035211

Model parameters (couplings, inverse interaction ranges or subtraction constants) fixed in fits to low energy K^-p data (and more in some cases).

Comparative analysis of the first four approaches presented in A. C., M. Mai, U.-G. Meißner, J. Smejkal - Nucl. Phys. A 954 (2016) 17

A. Cieplý MENU 2019

Kyoto-Munich (KM) KM.. solid black

 $\begin{array}{l} Murcia \ (M_{I} \ , \ M_{II} \) \\ M_{I} \ .. dashed \ blue \\ M_{II} \ .. dashed \ green \end{array}$

Bonn (B2, B4) B_2 ..dotted purple B_4 ..dot-dashed red

Prague (P) P...dot-long dashed blue

Barcelona (BCN) BCN..dot-dot-dashed brown

Japan Proton Accelerator Research Complex - J-PARC

RIKEN

University **British Columbia** of Victoria Canada

J-PARC

THE UNIVERSITY OF TOKYO

ПП

IMU

K-d collaboration LNF- INFN, Frascati, Italy SMI- ÖAW, Vienna, Austria IFIN - HH, Bucharest, Romania Politecnico, Milano, Italy **RIKEN**, Japan Tokyo Univ., Japan Victoria Univ., Canada KEK, Tsukuba, Japan RCNP, Osaka, Japan Seoul Univ., South Korea Zagreb Univ., Croatia INFN, Torino, Italy Osaka Univ., Japan TUM, Garching, Germany Kyoto Univ., Japan Jagiellonian Univ., Poland RCJ, Juelich, Germany Santiago de Compostela Univ., Spain Tohoku Univ., Japan KIRAMS, Seoul, South Korea

Experimental challenge towards a K⁻d measurement

• X-ray yield: $K^-p \sim 1\%$

 $K^{-}d \sim 0.1 \%$

• 1s state width: $K^-p \sim 540 \text{ eV}$

 $K^{-}d \sim 800 - 1000 \text{ eV}$

BG sources: asynchronous BG \rightarrow timing synchronous BG \rightarrow spatial correlation

X-ray detector system
Lightweight cryogenic target
Charged particle veto

SIDDHART-2 new X-ray detector New SDD technology with CUBE preamplifier

Combined target and SDD design target cell: 1 = 160 mm, d = 65 mm target pressure max.: 0.35 MPa target temperature: 23 – 30 K SDD active area: 246 cm² density: 5% LHD (29K/0.35 MPa)

• SDD cooling and support

12 x 4 SDD arrays

Al reinforced side wall 75 μm Kapton

[•] entrance window 75 μm Kapton

start counter T0

J-PARC E57 K⁻d apparatus

2-stage closed cycle cryo-cooler

16-channel amplifier boards –

Analogue signal and HV-LV cables - Ultra-pure aluminium cooling lines –

Line driver boards –

Cryo target + SDD detector ¬

E57 within E15 spectrometer (CDS)

K1.8BR area February 2019

K+ run: Vertex (BPC&CDC)

-130<Z<-70

-60<Z<60

70<Z<130 T. Hashimoto@20190515

Event selection by CDC analysis

T. Hashimoto@20190619

Energy (keV)

Geant4 simulated K⁻d X-ray spectrum

For more infos:																	
File Edit View Favorites Tools Help																	
APS	Journals 🔻	Help/Feedb	back									Journa	, vol, page,	DOI, etc.	•	٩	Log in
	REVIE	WS OF	= MO[DERN PH	YSIC	S Press	About	Staff	2								
	Accepted	l Paper															
	The modern era of light kaonic atom experiments Rev. Mod. Phys. Catalina Curceanu, Carlo Guaraldo, Mihail Iliescu, Michael Cargnelli, Ryugo Hayano, Johann Marton, Johann Zmeskal, Tomoichi Ishiwatari, Masa Iwasaki, Shinji Okada, Diana Laura Sirghi, and Hideyuki Tatsuno Accepted 8 March 2019 Thank vou for vour attention!																
	ABSTRACT			ABST	RACT												
				This revi activity, precisior kaon, co As a res relative e threshold	ew article (lefined by measurer ntaining th ult, their st nergy. Thi ", namely	covers the breakthroin ments. Kad e strange udy offers is allows to at zero rei	modern e ughs in tec onic atoms quark, whi the unique o study the lative ener	era of expe chnologica s are atom ich interac e opportur e strong in ray, withou	rimental k Il developr ic systems ts in the lo ity to perfo teraction b it the need	aonic aton nents whic where an west orbit orm experi etween th	ms studies ch allowed n electron ts with the iments eq ne antikaol apolation t	s, encompas I performing is replaced I nucleus als uivalent to s n and the nu o zero energ	sing twenty a series of l by a negativ by the stro- cattering at cleon or the by as in sca	years of ong-awaite ely charged ng interacti vanishing nucleus "a ttering	d 1 ion. t		

K⁻d scattering lengths - theory

$\epsilon_{1s} [eV]$	Γ_{1s} [eV]	Reference
- 670	1016	Weise 2017 [2]
- 887	757	Mizutani 2013 [4]
- 736	826	Shevchenko 2015 [5]
- 779	650	Meißner 2011 [1]
- 769	674	Gal 2007 [6]
- 884	665	Meißner 2006 [7]
- 1080	1024	Oset 2001 [3]

[1] M. Döring, U.-G. Meißner, Phys. Lett. B 704 (2011) 663

[2] T. Hoshino et al., Physical Review C96 (2017) 045204

[3] S.S. Kamakov, E. Oset, A. Ramos, Nucl. Phys. A 690 (2001) 494

[4] T. Mizutani, C. Fayard, B. Saghai, K. Tsushima, Phys. Rev. C 87, 035201 (2013), arXiv:1211.5824[hep-ph]

[5] N.V. Shevchenko, Phys. Lett. B 744 (2015) 105

[6] A. Gal, Int. J. Mod. Phys. A22 (2007) 226

[7] U.-G. Meißner, U. Raha, A. Rusetsky, Eur. phys. J. C47 (2006) 473

Scattering lengths

Deser formula connects shift ε_{1s} and width Γ_{1s} to the real and imaginary part of *a* _{K-p}

$$\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\mu^2 \alpha^3 a_{K-p}$$

 μ ...reduced mass of the K⁻p system α ...fine-structure constant

Improved Deser formula with isospin corrections

$$\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -\frac{2\mu^2 \alpha^3 a_{K-p}}{1 + 2\mu\alpha(\ln\alpha - 1)a_{K-p}}$$

V. Baru, E. Epelbaum, and A. Rusetsky, Eur. Phys. J. A 42 (2009) 111

$$a_{K^{-}p} = \frac{1}{2} [a_0 + a_1]$$
$$a_{K^{-}n} = a_1$$

$$a_{K^{-}d} = \frac{k}{2} \left[a_{K^{-}p} + a_{K^{-}n} \right] + C = \frac{k}{4} \left[a_0 + 3a_1 \right] + C$$
$$k = \frac{4 \left[m_n + m_K \right]}{\left[2m_n + m_K \right]}$$

C includes all higher-order contributions, all other physics associated with the K-d three-body interaction.

Theory – K⁻d precision SIDDHARTA-2 and E57

Physical Review C96 (2017) 045204 arXiv:1705.06857v1 [nucl-th] 19 May 2017

Constraining the $\bar{K}N$ interaction from the 1S level shift of kaonic deuterium

Tsubasa Hoshino,¹ Shota Ohnishi,¹ Wataru Horiuchi,¹ Tetsuo Hyodo,² and Wolfram Weise^{2,3}

¹Department of Physics, Hokkaido University, Sapporo 060-0810, Japan ²Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan ³Physik-Department, Technische Universität München, 85748 Garching, Germany

Motivated by the precise measurement of the 1S level shift of kaonic hydrogen, we perform accurate three-body calculations for the spectrum of kaonic deuterium using a realistic antikaonnucleon $(\bar{K}N)$ interaction. In order to describe both short- and long-range behavior of the kaonic atomic states, we solve the three-body Schrödinger equation with a superposition of a large number of correlated Gaussian basis functions covering distances up to several hundreds of fm. Transition energies between 1S, 2P and 2S states are determined with high precision. The complex energy shift of the 1S level of kaonic deuterium is found to be $\Delta E - i\Gamma/2 = (670 - i\,508)$ eV. The sensitivity of this level shift with respect to the isospin I = 1 component of the $\bar{K}N$ interaction is examined. It is pointed out that an experimental determination of the kaonic deuterium level shift within an uncertainty of 25 % will provide a constraint for the I = 1 component of the $\bar{K}N$ interaction significantly stronger than that from kaonic hydrogen.

Three-body calculation of the 1s level shift in kaonic deuterium

P. Doleschall^a, J. Révai^a, N.V. Shevchenko^{b,*}

^a Wigner Research Center for Physics, RMI, H-1525 Budapest, P.O.B. 49, Hungary ^b Nuclear Physics Institute, 25068 Řež, Czech Republic

A R T I C L E I N F O

Article history: Received 13 February 2015 Received in revised form 11 March 2015 Accepted 19 March 2015 Available online 24 March 2015 Editor: J.-P. Blaizot

ABSTRACT

The first exact calculation of a three-body hadronic atom was performed. Kaonic deuterium 1s level shift and width were evaluated using Faddeev-type equations with Coulomb interaction. The obtained exact results were compared with commonly used approximate approaches.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.