How long does

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.

$$
\text { M. Pietrow }{ }^{1} \quad \text { P. Słomski }{ }^{2}
$$

${ }^{1}$ Insitute of Physics, M. Curie-Skłodowska University, ul. PI. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
${ }^{2}$ IT Company Martinex, ul. Mełgiewska 95, 21-040 Świdnik, Poland

June 25, 2019

Positron applications

How long does
it take
(para-Ps AND
ortho-Ps) to
become
(para-Ps OR
ortho-Ps)?
Decoherence
of Positronium
in Matter.
M. Pietrow ${ }^{1}$
P. Stomski

Positron techniques: PALS, ACAR, Doppler Broad. Spec.
Non-destructive nano-probe for:

- free volume (e.g., pores) size,
- study of the electron structure of the bulk and of defects

resources:
http://positron.physik.uni-halle.de
https://i.pinimg.com

Positron Emission Tomography

The blob model

How long does it take
(para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

para-, ortho- , $2-\gamma, 3-\gamma$

How long does it take
(para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski
p-Ps, o-Ps

$$
\begin{aligned}
|S, m=0\rangle & =\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{-}|\downarrow\rangle_{+}-|\downarrow\rangle_{-}|\uparrow\rangle_{+}\right) \\
|T, m=-1\rangle & =|\downarrow\rangle_{-}|\downarrow\rangle_{+} \\
|T, m=0\rangle & =\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{-}|\downarrow\rangle_{+}+|\downarrow\rangle_{-}|\uparrow\rangle_{+}\right) \\
|T, m=+1\rangle & =|\uparrow\rangle-|\uparrow\rangle_{+}
\end{aligned}
$$

$$
\begin{aligned}
\text { para - Ps : } & \left|S=0, m_{S}=0\right\rangle \longrightarrow 2 \gamma \\
\text { ortho-Ps: } & \left|S=1, m_{S}=-1,0,1\right\rangle \longrightarrow 3 \gamma
\end{aligned}
$$

$\gamma \longrightarrow$ lifetime spectra

2γ from Ps in matter

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Stomski

- pick-off annihilation (with e^{-}from an orbital)
- chemical quenching (due to chemical bond of Ps)
- ortho-para spin conversion (spin-orbit interaction)
- ortho-para spin conversion (electron exchange; paramagnetic molecules)

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Słomski

QED states are PC - invariant

$$
\pi_{P C}=-(-1)^{S}
$$

${ }^{2 \mathbf{S}}{ }^{+1} \mathbf{L}_{\mathbf{J}}$	\mathbf{J}	$\pi_{\mathbf{P}}$	$\pi_{\mathbf{C}}$	$\pi_{\mathbf{P C}}$
${ }^{1} S_{0}$	0	-1	+1	-1
${ }^{1} P_{1}$	1	+1	-1	-1
${ }^{1} D_{2}$	2	-1	+1	-1

$$
\mathrm{p}-\mathrm{Ps}
$$

${ }^{2 \mathbf{S}+1} \mathbf{L}_{\mathbf{J}}$	\mathbf{J}	$\pi_{\mathbf{P}}$	$\pi_{\mathbf{C}}$	$\pi_{\mathbf{P C}}$
${ }^{3} P_{0}$	0	+1	+1	+1
${ }^{3} S_{1}+{ }^{3} D_{1}$	1	-1	-1	+1
${ }^{3} P_{1}$	1	+1	+1	+1

o-Ps

C-parity invariance leads to a selection rule for decay

$$
\begin{aligned}
\text { Ps : } & & \pi_{C}=(-1)^{L+S} \\
\gamma: & & \pi_{C}=(-1)^{n}
\end{aligned}
$$

Motivation

How long does it take become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Stomski

Some facts:

- Energy difference between p-Ps and o-Ps is $8.4 \cdot 10^{-4} \mathrm{eV}$ $\left(k T \simeq 2.5 \cdot 10^{-2} \mathrm{eV}\right)$.
- What if an electromagnetic interaction of the $e^{+}-e^{-}$pair with other electrons does not prefer p-Ps, o-Ps basis? Its coupling constant is comparable to this for $e^{+}-e^{-}$ internal interaction.

Let us assume - Ps can exist in the cohered state of spins. As long as Ps is in a superposition the number of photons per decay is not well defined.

Motivation

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Słomski

- spin conversion of valence electrons is possible for unpaired e^{-}(paramagnetic mol., radicals, quasi-free e^{-} who are present in the e^{+}blob).
- spin interaction of a valence e^{-}at a free volume wall may interfere with the Pauli principle.
- Ps bounces to the wall time to time only.

Interactions of $e^{+}-e^{-}$with environmental electrons (spin bath), via a spin space, can change the spin of the pair.
Does it lead to the p-Ps and o-Ps? How long does it take?

Decoherence (general). Schrödinger cat problem.

How long does
it take
(para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Słomski
Q. decoherence plays an important role in explanation of Schrödinger cat states reduction.

It is a process of coupling the system with environmental modes which leads to erase off-diagonal terms in the reduced density matrix of the system.

Here, it allows for decaying the Ps state from a superposition state.

Decoherence (general). Schrödinger cat problem.

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Stomski

```
initial state
\mp@subsup{\Phi}{}{(i)}=|\mp@subsup{\psi}{\mathcal{S}}{}\rangle|\mp@subsup{d}{\downarrow}{}\rangle,
where |\psi\mathcal{S}\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle
final state
\(\phi^{(f)}=\alpha|\uparrow\rangle\left|d_{\uparrow}\right\rangle+\beta|\downarrow\rangle\left|d_{\downarrow}\right\rangle\)
```


W.H. Żurek: Physics Today, 44:36-44 (1991)

Schrödinger cat probel:

Does it mean that the system is described by alternatives before asking the detector?

Or does it mean simply description of the ignorance of the observer about the outcome and does not describe a real final state? What the state evolves in time?

Decoherence. Non-unitary reduction of the state

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Słomski

decoherence, $H_{i n t}$

coherent system

$$
\begin{aligned}
\rho^{(f)} & =\left|\Phi^{(f)}\right\rangle\left\langle\phi^{(f)}\right|= \\
& =|\alpha|^{2} \cdot|\uparrow\rangle\langle\uparrow| \cdot\left|d_{\uparrow}\right\rangle\left\langle d_{\uparrow}\right|+|\beta|^{2} \cdot|\downarrow\rangle\langle\downarrow| \cdot\left|d_{\downarrow}\right\rangle\left\langle d_{\downarrow}\right|+ \\
& +\alpha \beta^{*} \cdot|\uparrow\rangle\langle\downarrow| \cdot\left|d_{\uparrow}\right\rangle\left\langle d_{\downarrow}\right|+\alpha^{*} \beta \cdot|\downarrow\rangle\langle\uparrow| \cdot\left|d_{\downarrow}\right\rangle\left\langle d_{\uparrow}\right|
\end{aligned}
$$

Decoherence. Non-unitary reduction of the state

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

decoherence, $H_{\text {int }}$
coherent system

$$
\begin{aligned}
\rho^{(f)} & =\left|\Phi^{(f)}\right\rangle\left\langle\phi^{(f)}\right|= \\
& =|\alpha|^{2} \cdot|\uparrow\rangle\langle\uparrow| \cdot\left|d_{\uparrow}\right\rangle\left\langle d_{\uparrow}\right|+|\beta|^{2} \cdot|\downarrow\rangle\langle\downarrow| \cdot\left|d_{\downarrow}\right\rangle\left\langle d_{\downarrow}\right|+ \\
& +\alpha \beta^{*} \cdot|\uparrow\rangle\langle\downarrow| \cdot\left|d_{\uparrow}\right\rangle\left\langle d_{\downarrow}\right|+\alpha^{*} \beta \cdot|\downarrow\rangle\langle\uparrow| \cdot\left|d_{\downarrow}\right\rangle\left\langle d_{\uparrow}\right|
\end{aligned}
$$

goes to a reduced one

$$
\begin{aligned}
\rho^{(r)} & =\left|\Phi^{(f)}\right\rangle\left\langle\phi^{(f)}\right|= \\
& =|\alpha|^{2} \cdot|\uparrow\rangle\langle\uparrow| \cdot\left|d_{\uparrow}\right\rangle\left\langle d_{\uparrow}\right|+|\beta|^{2} \cdot|\downarrow\rangle\langle\downarrow| \cdot\left|d_{\downarrow}\right\rangle\left\langle d_{\downarrow}\right|+ \\
& +\alpha \beta^{*} \cdot|\uparrow\rangle\langle\downarrow| \cdot\left|d_{\uparrow}\right\rangle\left\langle d_{\downarrow}\right|+Q^{*} \beta \cdot|\downarrow\rangle\langle\uparrow| \cdot\left|d_{\downarrow}\right\rangle\left\langle d_{\uparrow} \uparrow\right.
\end{aligned}
$$

Decoherence (general). Interaction and reading

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Słomski

Measurement BEFORE interaction with environment $0 \cdots$

$$
\begin{aligned}
\rho^{(B)} & =|\psi\rangle|\epsilon\rangle\langle\epsilon|\langle\psi|= \\
& =\sum_{i} \alpha_{i}\left|\psi_{i}\right\rangle \sum_{j} \beta_{j}\left|\epsilon_{j}\right\rangle \sum_{k} \beta_{k}^{*}\left\langle\epsilon_{k}\right| \sum_{l} \alpha_{l}^{*}\left\langle\psi_{l}\right|
\end{aligned}
$$

Measurement AFTER interaction with environment $\therefore 0$

$$
\rho^{(A)}=\sum_{i}\left|\psi_{i}\right\rangle\left|\epsilon_{i}\right\rangle \sum_{j}\left\langle\epsilon_{j}\right|\left\langle\psi_{j}\right|
$$

Decoherence (general). Interaction and reading

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

Reduced density matrix:
BEFORE interaction with environment

$$
\begin{aligned}
\rho_{r e d}^{(B)} & \left.=\operatorname{Tr}_{\text {env }}(\rho)=\sum_{i}\left\langle\epsilon_{i}\right|(|\psi| \epsilon\rangle\langle\epsilon|\langle\psi|\right)\left|\epsilon_{i}\right\rangle=\cdots \\
& =\cdots=\sum_{i, j} \alpha_{i} \alpha_{j}^{*}\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|
\end{aligned}
$$

and AFTER that

$$
\begin{aligned}
\rho_{\text {red }}^{(A)} & =\operatorname{Tr}_{\text {env }}(\rho)=\sum_{k}\left\langle\epsilon_{k}\right| \rho\left|\epsilon_{k}\right\rangle= \\
& =\cdots=\sum_{k}\left|\alpha_{k}\right|^{2}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
\end{aligned}
$$

Decoherence (general). Interaction and reading

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

Transition probability $\psi \longrightarrow \phi$: BEFORE

$$
\begin{aligned}
\langle\phi| \rho_{r e d}^{(B)}|\phi\rangle & =\sum_{i, j}\left\langle\phi_{i}^{*}\right| \rho_{r e d}\left|\phi_{j}\right\rangle= \\
& =\sum_{i}\left|\alpha_{i}\right|^{2}\left|\beta_{i}\right|^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j}^{*} \beta_{i}^{*} \beta_{j}
\end{aligned}
$$

whereas AFTER

$$
\begin{aligned}
\langle\phi| \rho_{\text {red }}^{(A)}|\phi\rangle & =\sum_{i, j}\left\langle\phi_{i}^{*}\right| \rho_{\text {red }}\left|\phi_{j}\right\rangle= \\
& =\sum_{i}\left|\alpha_{i}\right|^{2}\left|\beta_{i}\right|^{2}
\end{aligned}
$$

Spin decoherence in the literature

How long does
it take
(para-Ps AND
ortho-Ps) to
become
(para-Ps OR
ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

Volume 90, Number 21 PHYSICAL REVIEW LETTERS
week ending 30 MAY 20013

Quantum Oscillations without Quantum Coherence

V.V. Dobrovitski, ${ }^{1}$ H. A. De Raedt,, ${ }^{2}$ M. L. Katsielson, ${ }^{3}$ and B. N. Harmon ${ }^{1}$
'Ames Labovatory, lowa State Univerrity, Ames, Iowa 50011, USA
${ }^{2}$ Department of Applied Physics and Marerials Scrience Centre, University of Graningen, Nijentoorgh 4 , NL-9747 AG Groningen, The Netherlands
Insiturue of Metal Plysics, Elaterinburg 620219, Russia
(Received 8 December 2001; published 30 May 2003)
We stody numerically the damping of quantum oscillations and the dynamics of the density matrix in model many-spin systems decobered by a spin bath. We show that oscillations of some density matrix elements can persist with considerable amplitude long after oher elemeats, along with the entropy, have come close to saturation, i.e., when the system has been decohered almost completely. The oscillations exhibit very slow decay, and may be observable in experiments.

For a quantum system prepared in a linear superposition of its eigenstates, some observables can oscillate leads to a decay of the system's initial pure state into a mixture of several states; i.e, nondiagonal elements of the density matrix vanish, and diagonal elements achieve
strate very slow damping, which is not related to thermal ization of the system. The existence of rapid quantum with the standard seenario of decoherence, and to our knowledge, has not been discussed before.
We consider a system weakly coupled to the environ-

PHYSICAL REVIEW B 70, 014435 (2004)

Parity effects in spin decoherence

A. Melikidze, ${ }^{1}$ V. V. Dobrovitski, ${ }^{2}$ H. A. De Raed., M. I. Katsnelson, ${ }^{4}$ and B. N. Harmon ${ }^{2}$ ${ }^{1}$ Kavi Institute for Theoretical Physics, University of Caltifomia, Santa Barbara, Catiformia 93106, USA ${ }^{3}$ Applied Physics, Conputational Physics, Materials Science Centre, Universiry of Groningen, Njienhorgh 4, Conputational Physics, Materials Science Centre, Universi
NL-9747 AG Groningen. The Netherlands
(Received 11 February 2004; revised manuscript received 14 April 2004; published 30 July 2004)

We demonstrate that decoherence of many-spin systems can drastically differ from decoherence of singlespin systems. The difference ariginates at the mast bassic level, being determined by parily of the central system, i.e., by whether the system comprises even or odd number of spin- $1 / 2$ entities. Therefore, it is very
likely that similar distinction between the central spin systems of even and odd parity is important in many other siturtions. Our consideration clarifies the physical arigin of the unusual two-step decoberence found previously in the two-spin systems.

DOL: 10.1103/PhysRevB. 70.014435
PACS number(s): $75.10 . \mathrm{Jm}, 03.65 . \mathrm{Yz}, 76.60 . \mathrm{Es}, 03.65 \mathrm{Ta}$

Reference to our calculations

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Physics Letters A 375 (2011) 3872-3876

The role of positronium decoherence in positron annihilation in matter

```
M. Pietrow }\mp@subsup{}{}{\textrm{a},*}\mathrm{ , P. Słomski }\mp@subsup{}{}{\textrm{b}
```

${ }^{2}$ Institute of Physics, M. Curie-Skkodowska University, ul. Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin. Poland
${ }^{\text {b }}$ Grographic Infonnation Systems Development Company Martinex, uL Melgiewska 95, 21-040 świdnik. Poland

ARTICLE INFO

Article history

Received 23 june 2011

Received in revised form 1 September 2011 Recerved in revised form 1 S Accepted 12 September 2011
Available online 17 September 2011 Available online 17 September
Communicated by P.R. Holland

Keywords:

Positronium
Decoherence
Positron annihilation lifetime spectroscopy (PALS)

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

1. Introduction

The most powerful model describing the formation of the positronium atom in matter was developed by Stepanov and Byakov [1]. A positron from a radioactive source passing through a sample creates products including electrons, ions, and radicals, losing its own energy in the process. The positron comes to rest

Positron annihilation is widely used in studies of the properties of matter, such as the free volume distribution [2], and of the trapping electrons produced during irradiation processes [3]. One of the most common positronic measurement techniques is Positron Annihilation Lifetime Spectroscopy (PALS) [4], which measures the time between the creation and annihilation of a positron (and its bound state, positronium). The lifetime of each positron fraction is rolatad in come wiat th the nernertiae of the camolo whithere tha in-

Decoherence for $e^{+}-e^{-}$

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,

Let assume permanent interaction of $e^{+}-e^{-}$with N electron spins

$$
\begin{equation*}
H_{i n t}=J \frac{\hbar^{2}}{4} \sum_{i=3}^{N+2} \bar{\sigma}^{(2)} \circ \bar{\sigma}^{(i)} \tag{1}
\end{equation*}
$$

$$
\rho_{0} \equiv\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|, \text { where }
$$

$$
\begin{gather*}
\left|\Psi_{0}\right\rangle=|P s\rangle_{0} \prod_{i=3}^{N+2}\left|s_{i}\right\rangle \equiv|P s\rangle_{0}|S\rangle \tag{2}\\
|P s\rangle_{0}=\frac{1}{2}(|0,0\rangle+|1,-1\rangle+|1,0\rangle+|1,+1\rangle) \tag{3}
\end{gather*}
$$

Decoherence for $e^{+}-e^{-}$

How long does it take
(para-Ps AND
ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

$$
\begin{equation*}
\rho(t)=\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \tag{4}
\end{equation*}
$$

where $\left|\Psi_{t}\right\rangle=e^{-i H t / \hbar}\left|\Psi_{0}\right\rangle$.

Time evolution is given by

$$
\begin{align*}
\rho_{P_{s}}(t) & =\operatorname{Tr}_{\text {env }}[\rho(t)] \tag{5}\\
\left|\Psi_{t}\right\rangle=e^{-i H t / \hbar}\left|\Psi_{0}\right\rangle & \simeq \sum_{j=0}^{n} \frac{1}{j!}\left(-\frac{i t H}{\hbar}\right)^{j}\left|\Psi_{0}\right\rangle, \tag{6}
\end{align*}
$$

Results

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

The measure of nondiagonality

$$
\left.S(t)=\sum_{s_{z}=-1}^{+1}\left|\langle s=0| \rho_{P_{s}}(t)\right| s=1, s_{z}\right\rangle\left.\right|^{2}
$$

$N=2$ (random init.), $n=10$.

$$
\left|\rho_{[0,0 ; 1,+1]}(t)\right|^{2}
$$

Results- decoherence may last tenths of ps

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

$S(t)$ averaged over 100 rand. $|S\rangle$.

Results. T_{d} decreases with N

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Słomski

Averaged over 20 randomly chosen initial state vectors. $n=7$
! asymptotic T_{d} value is visible

J coupling constant

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Słomski

Here, $J \frac{\hbar^{2}}{4}$ in $H_{\text {int }}$ is set as $10^{-4} \mathrm{eV}$ (ortho-para conversion energy).
However, for $N=3$:
if $J \frac{\hbar^{2}}{4}=10^{-5} \mathrm{eV} \Longrightarrow \quad T_{d} \simeq 150 \mathrm{ps}$
instead of $T_{d} \simeq 18 \mathrm{ps}$ estimated for $J \frac{\hbar^{2}}{4}=10^{-4} \mathrm{eV}$.
In larger free volumes $(2 R \gg \lambda=3.6 \mathrm{~nm})$ a pair interacts with the wall only from time to time $\Longrightarrow J=J(t)$.

Results. Magnetization of the medium

How long does
it take
(para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Słomski

$N=4, n=10$, av. over 100

Warning 1: H Eigenstates of $P s$ in magnetic field are superposition of p-Ps and o-Ps.
Warning 2: It is known that Ps does not form in ferromagnetic crystals.

Results. Magnetization along the z-axis

How long does it take
(para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Słomski

Results. Relative account of terms. Slowly covergent expression.

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$, P. Słomski

Next terms

$$
H^{n}=\left(\sum_{p=3}^{N+2} \sigma^{(2)} \circ \sigma^{(p)}\right)^{n}=\sum_{p, s, t, \ldots}^{n-\text { fold sum }} \sigma^{(2)} \circ \sigma^{(p)} \cdot \sigma^{(2)} \circ \sigma^{(s)} \cdot \ldots
$$

in interaction Hamiltonian expansion may not be to neglect.

E.g., for $N=10$, a greatest contribution gives $n=7^{\text {th }}$ term of $H_{\text {int }}$ expansion at $t=10 \mathrm{ps}$.

Decay rate of positrons. Link to PALS spectra.

How long does it take (para-Ps AND ortho-Ps) to become (para-Ps OR ortho-Ps)?

Decoherence of Positronium in Matter.
M. Pietrow ${ }^{1}$,
P. Stomski

Now, the dynamics of positron population is estimated by

$$
\begin{cases}d P_{e}(t)=-\left(\lambda_{e}+\nu\right) P_{e}(t) d t, & P_{e}(0)=1 \\ d(o P s)(t)=\frac{3}{4} \nu P_{e}(t) d t-\lambda_{o P s}(o P s)(t) d t, & (o P s)(0)=0 \\ d(p P s)(t)=\frac{1}{4} \nu P_{e}(t) d t-\lambda_{p P s}(p P s)(t) d t, & (p P s)(0)=0\end{cases}
$$

the decoherence causes its modification

$$
\begin{cases}d P_{e}(t)=-\left(\lambda_{e}+\nu\right) P_{e}(t) d t, & P_{e}(0)=1, \\ d S(t)=\nu P_{e}(t) d t-\left(\lambda_{S}+K\right) S(t) d t, & S(0)=0, \\ d\left(o P_{s}\right)(t)=K_{1} S(t) d t-\lambda_{o P_{s}}\left(o P_{s}\right)(t) d t, & \left(o P_{s}\right)(0)=0, \\ d\left(p P_{s}\right)(t)=K_{2} S(t) d t-\lambda_{p P_{s}\left(p P_{s}\right)(t) d t,}\left(p P_{s}\right)(0)=0\end{cases}
$$

where $K_{1}+K_{2}=K$.

γ spectra for PALS

How long does it take

Now in PALS, the gamma spectra are decomposed into

$$
d N_{\gamma} \sim-d P_{e}^{\left(\lambda_{e}\right)}-d\left(p P_{s}\right)^{\left(\lambda_{p P s}\right)}-d\left(o P_{s}\right)^{\left(\lambda_{o P s}\right)}
$$

The influence of the decoherence causes its modification

$$
d N_{\gamma} \sim-d P_{e}^{\left(\lambda_{e}\right)}-d S^{\left(\lambda_{s}\right)}-d(p P s)^{\left(\lambda_{\rho P s}\right)}-d(o P s)^{\left(\lambda_{o P s}\right)} .
$$

Most of the annihilation is 2γ in matter. The additional element in the equation is responsible for an increase of 3γ annihilation as long as the cohered state exists.

Summary 1/2

- Indeed, $S(t)$ decreases. $\operatorname{Ps}(\mathrm{t})$ (almost) decoheres in basis of the $\mathrm{p}-\mathrm{Ps}$ and o-Ps. After $S(t)$ collapsing oscillations appear.
- The calculated timescale of T_{d} is pico-secs. Thus, the process of spin decoherence may affect the gamma spectra for short living positrons.
- T_{d} decreases with the number of electrons N in the bath.
- T_{d} depends strongly on the value of coupling constant J.

Summary 2/2

- Higher orders of the Hamiltonian in the evolution operator give important contribution to calculated T_{d} but do not change the timescale of it.
- Magnetization of the medium speeds up the decoherence and suppresses the effectiveness of it.
- More realistic interaction Hamiltonians are needed. In particular, $J=J(t)$ need to be considered.

