

3D reconstruction of point-like sources in a J-PET scanner using total variation regularization

Lech Raczyński (J-PET collaboration)

Świerk Computing Centre National Centre for Nuclear Research Sołtana 7, 05-400 Otwock-Świerk

Kraków, 27.06.2019

Agenda:

- Analytic image reconstruction algorithms:
 - TOF back-projection total variation (TV) regularization
 - TOF filtered back-projection (reference method)
- Measurement of 6 point-like sources in 3 layer J-PET scanner
- Results:
 - evaluation of spatial resolution
 - estimation of computational cost

Subsequent steps of the proposed algorithm:

• List-mode data pre-correction

TOF back-projection

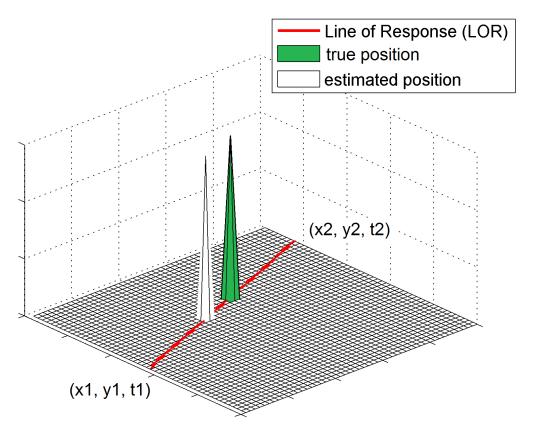
Subsequent steps of the proposed algorithm:

- List-mode data pre-correction
- : randoms and scatter detector efficiency attenuation factors

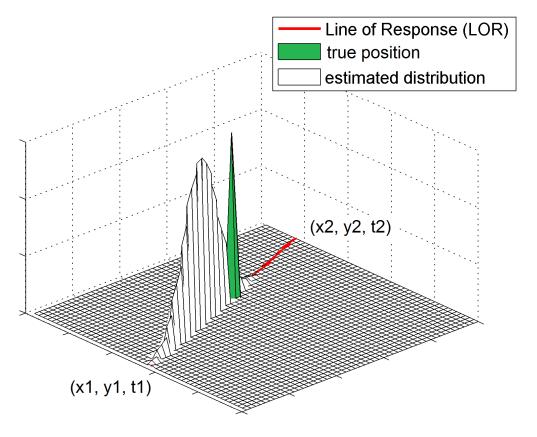
• TOF back-projection

Subsequent steps of the proposed algorithm:

• List-mode data pre-correction


TOF back-projection

2-dimensional image space (example)


• TOF information allows us to estimate the position along LOR

2-dimensional image space (example)

- TOF information allows us to estimate the position along LOR
- We may include the distribution along LOR (TOF kernel) in calculation of TOF back-projected image

 Deposition of corrected data into TOF back-projected image b; formulation of filtering problem:

$$\mathbf{b} = A\mathbf{f}$$

- f : unknown image
- $A_{\rm }$: overall TOF forward and back-projection operator

- bold symbols b and f represent the vectorized versions of 3-dimensional images.
- ** matrix A is finite-dimensional sampling of original operator

Subsequent steps of the proposed algorithm:

• List-mode data pre-correction

TOF back-projection

$$\mathbf{b} = A\mathbf{f}$$

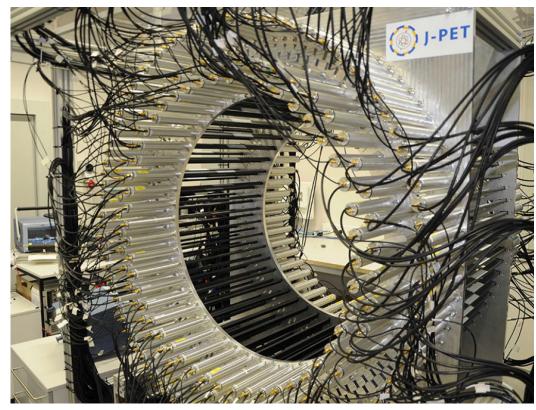
• Total Variation (TV) norm of an image can be defined as:

$$\mathrm{TV}(\mathbf{f}) = \sum_{i} |D_i \mathbf{f}|$$

- D : first-order forward finite-difference operator
- Image ${\bf f}$ is reconstructed by solving regularization problem:

$$\min_{\mathbf{f}} \ \mathrm{TV}(\mathbf{f}) + \frac{\mu}{2} \|A\mathbf{f} - \mathbf{b}\|_2^2$$

 μ^{-} : regularization parameter


2. Measurement in 3 layer J-PET scanner

Experimental setup:
Number of layers: 3Number of strips:192Detector length:50.00 cmCRT:500 ps

Number of true events: 11.2 million

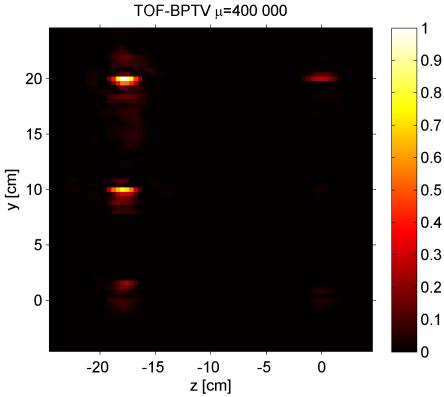
Voxel size:

x: 4.0 mm, y: 4.0 mm, z: 4.0 mm

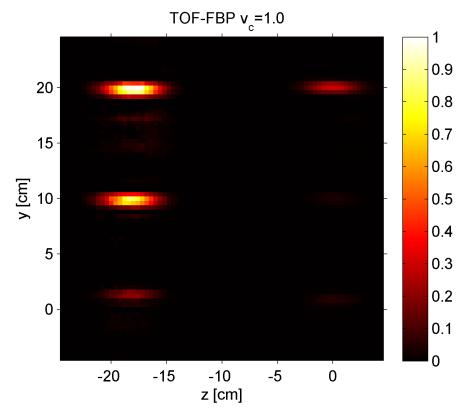
6 sources used in the measurements: serial number (1st column), position in detecting chamber (2nd column) and activity (3rd column).

Source	Position [cm]	Activity [kBq]
37/12	(0,1,0)	204
39/12	(0,10,0)	207
UR450	(0,20,0)	1134
UR451	(0,1,-18.75)	1131
K4-390	(0,10,-18.75)	6198
L2-295	(0, 20, -18.75)	7601

- Required corrections:
- detector efficiency
- randoms
- Small probability for photons scattering and attenuation (point-like sodium sources were placed on the styrofoam panel)



EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

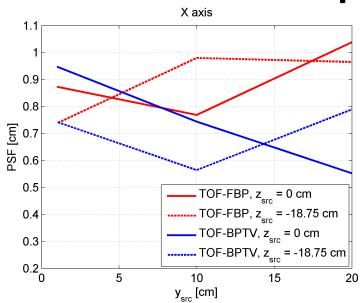


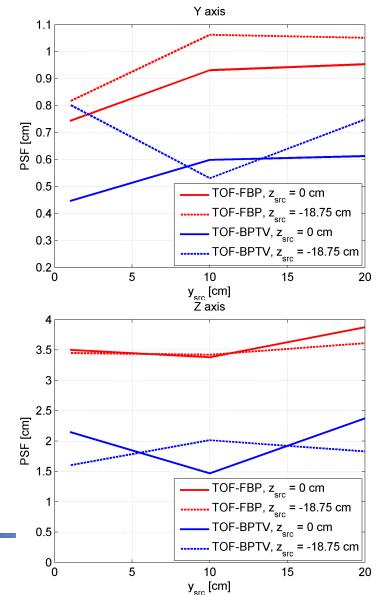
3. Results: spatial resolution

• Reconstructed images: (activity in linear scale)

ΡΕΤ

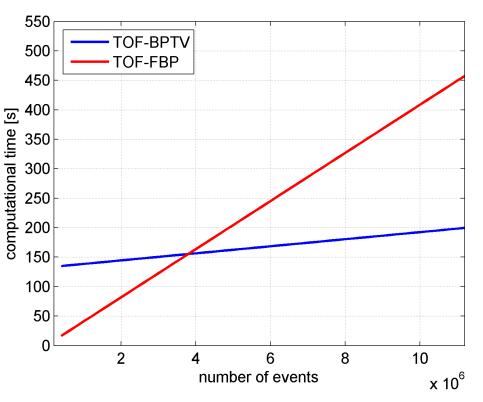
Source	Position [cm]	Activity [kBq]
37/12	(0,1,0)	204
39/12	(0,10,0)	207
UR450	(0,20,0)	1134
UR451	(0,1,-18.75)	1131
K4-390	(0,10,-18.75)	6198
L2-295	(0, 20, -18.75)	7601




EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

3. Results: spatial resolution

- PSF(x,y,z) values for optimal regularization parameters for both methods
- Much better PSF in z axis for TOF-BPTV than TOF-FBP



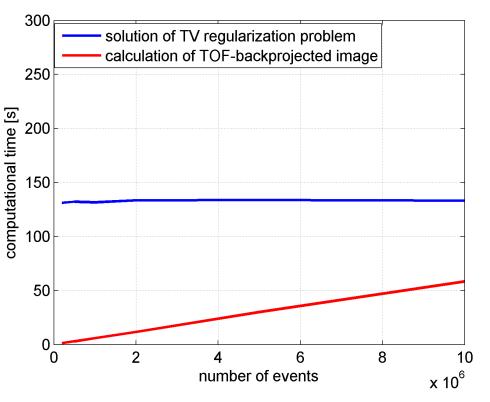
4. Results: computational time

For a set of more than **4 million** events TOF-BPTV is faster than TOF-FBP Comparison of computational time of TOF-BPTV and TOF-FBP methods

Reconstructed area: x,y,z: -24.4 cm; +24.4 cm

Voxel size: x,y,z: 4.0 mm

<u>Image size:</u> 123 x 123 x 123



4. Results: computational time

Computational time of both stages in TOF-BPTV method

TOF-BPTV method consists of two stages:

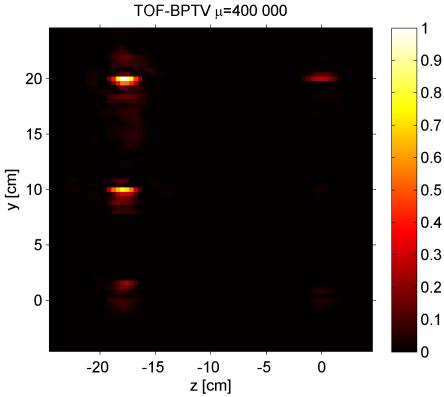
- 1) calculation of TOF back-projected image (b)
- 2) solving of TV problem

$$\min_{\mathbf{f}} \operatorname{TV}(\mathbf{f}) + \frac{\mu}{2} \|A\mathbf{f} - \mathbf{b}\|_2^2$$

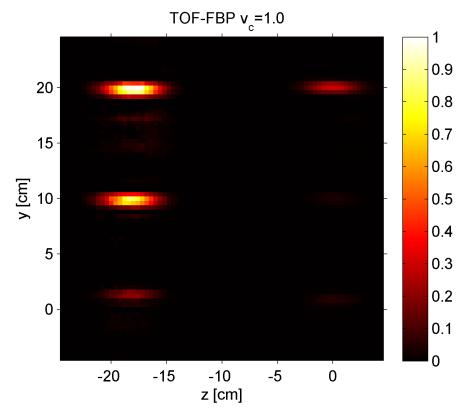
Time of solving TV problem is independent of number of events.

Summary

- The spatial resolution of the J-PET scanner was determined by estimation of full width half maximum in three directions of PSF images at six position inside the scanner volume.
- The comparison results shown superior spatial resolution of reconstructed images from the proposed TOF-BPTV method in respect to the TOF-FBP algorithm.
- Simultaneously, reconstruction time in proposed technique was approximately 2.2 times shorter than required by reference method (for full dataset with 11 million events).



EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

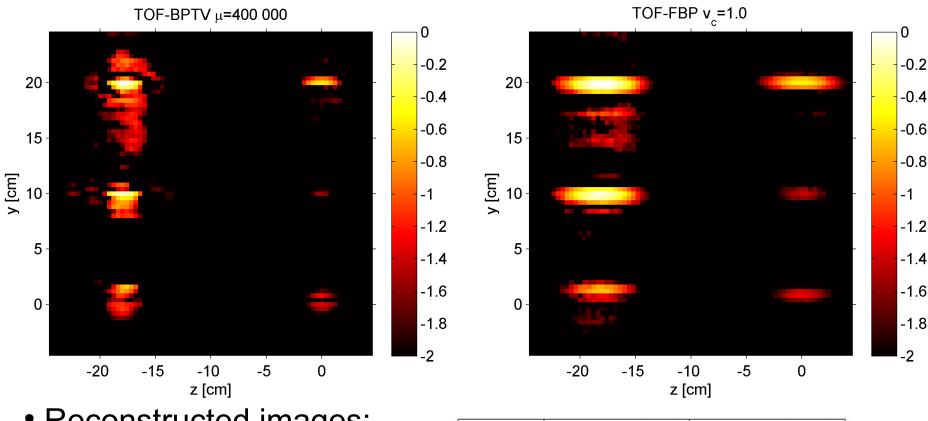


3. Results: spatial resolution

• Reconstructed images: (activity in linear scale)

ΡΕΤ

Source	Position [cm]	Activity [kBq]
37/12	(0,1,0)	204
39/12	(0,10,0)	207
UR450	(0,20,0)	1134
UR451	(0,1,-18.75)	1131
K4-390	(0,10,-18.75)	6198
L2-295	(0, 20, -18.75)	7601


ΡΕΤ

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

3. Results: spatial resolution

 Reconstructed images: (activity in logarithmic scale)

Source	Position [cm]	Activity [kBq]
37/12	(0,1,0)	204
39/12	(0,10,0)	207
UR450	(0,20,0)	1134
UR451	(0,1,-18.75)	1131
K4-390	(0,10,-18.75)	6198
L2-295	(0, 20, -18.75)	7601

