

A search for massless dark photons in positronium decays 3rd Jagiellonian symposium on Fundamental and Applied Subatomic Physics, Krakow (2019) Paolo Crivelli, ETH Zurich, Institute for Particle Physics and Astrophysics

Dark Matter: Astro + Cosmology through Gravitational effects

Interaction DM-SM other than gravity? If so very weak...

Only gravitationally? Nightmare scenario from a particle physicist point of view.

Relic densities of Standard Matter (SM) and Dark Matter (DM) are "similar"

SUGGESTS COMMON ORIGIN BETWEEN SM and DM.

Can those be related with A SINGLE THEORY?

li

The vector portal - Dark photons

B. Batell, M. Pospelov and A. Ritz, Phys. Rev. D80 (2009) 095024.

NEW FORCE CARRIED BY A NEW **VECTOR** BOSON: **DARK PHOTON**

EHzürich

Signatures for Dark Photons at Fixed target exp. (NA64@CERN)

VISIBLE DECAY MODE $m_A^\prime < 2m_X$

INVISIBLE DECAY MODE $m_A^\prime > 2m_X$

Pair production of SM particles

NA64, Phys. Rev. Lett. 120, 231802 (2018)

Missing Energy/momentum NA64, Phys. Rev. Lett. 118, 011802 (2017),

NEW: arXiv:1906.00176

The Massless Dark photon case - the Mirror Sector

Parity violation in weak interaction

T.D. Lee and C.N. Yang, Phys. Rev. 104, 4 (1956) C.S. Wu et al., Phys. Rev. 105, 1413 (1957) R.L.Garwin, L.M.Lederman, M.Weinrich, Phys. Rev. 105, 1415 (1957)

The Massless Dark photon case - the Mirror Sector

Parity violation in weak interaction

T.D. Lee and C.N. Yang, Phys. Rev. 104, 4 (1956) C.S. Wu et al., Phys. Rev. 105, 1413 (1957) R.L.Garwin, L.M.Lederman, M.Weinrich, Phys. Rev. 105, 1415 (1957)

THE MIRROR DID NOT SEEM TO BE OPERATING PROPERLY.

W. Pauli in a letter to V. Weisskopf,

"Now after the first shock is over, I begin to collect myself. Yes, it was very dramatic."

Is Nature left-right asymmetric?

• In the standard model parity violation introduced from beginning in the Lagrangian.

$$\begin{pmatrix} v_l \\ I^- \end{pmatrix}_L, \quad l_R^-, \quad \begin{pmatrix} u \\ d \end{pmatrix}_L, \quad u_R, \quad d_R$$

- Is nature really left-right asymmetric or do we happen to live in a universe dominated by particles with such properties?
 - Left-right symmetric models, symmetry restored at higher energies (V+A suppressed by heavy W_R mass) Pati and Salam, Phys. Rev. D10, 275 (1974) Mohapatra and Pati, Phys. Rev. D11, 566 (1975), Senjanovic and Mohapatra, D12, 1502 (1975)

2. Postulation of the existence of a sector of **mirror particles** Lee and Yang, Phys. Rev. 104, 4 (1956)

The mirror sector e'e \mathcal{V} pnn \bar{e}' \overline{e} **Ordinary particle sector Mirror particle sector** $\bar{\nu}$ $\bar{\nu}$ \bar{p} \bar{p} \bar{n} \bar{n} W, ZW'

 \rightarrow Mirror particles: same properties of ordinary particles but chirality of fields inverted. \rightarrow Same micro-physics governs interactions among mirror particles but they experience V+A weak interaction.

The mirror sector

If such a sector of particle exists → mirror symmetry conserved → left-right symmetry of nature restored

For a review see,Okun, Phys.Usp. 50 (2007) 380-389 [hep-ph/0606202] and Ciarcelluti,Int.J.Mod.Phys.D19:2151-2230 (2010).

The mirror sector

If such a sector of particle exists → mirror symmetry conserved → left-right symmetry of nature restored

For a review see,Okun, Phys.Usp. 50 (2007) 380-389 [hep-ph/0606202] and Ciarcelluti,Int.J.Mod.Phys.D19:2151-2230 (2010).

- Doubling the number of elementary particles to solve problems seems to be unnatural ... but ... it has been done before!
- Relativity + QM ⇒ anti-matter

The mirror sector e \mathcal{V} pn \bar{e}' \bar{e} **Ordinary particle sector Mirror particle sector** Ë $\bar{\nu}$ $\bar{\nu}'$ Gravity \bar{p}' \bar{p} \bar{n} \bar{n}' $W, Z \qquad W',$

The mirror sector would interact through gravitation with us. \rightarrow Mirror particles (stable and massive) are very good dark matter candidates.

The mirror sector e \mathcal{V} pnn $\bar{\epsilon}$ **Ordinary particle sector Mirror particle sector** \bar{p} \bar{n} \bar{n} W, ZW'

The mirror sector could interact through photon mirror-photon kinetic mixing: \rightarrow Implications for cosmology.

 \rightarrow Bounds (LSS, CMB, BBN): mixing strength ϵ < 3x10⁻⁸

B. Holdom, Phys. Lett. B166, 196 (1986)

•

Positronium as a portal to the Mirror sector

S. L. Glashow, Phys. Lett. B167, 35 (1986)

Coupling between oPs and oPs' ⇒ breaking of degeneracy

$$P(o-Ps \rightarrow o-Ps') = \sin^2(2\pi\varepsilon v t)$$

Experimental signature: $oPs \rightarrow invisible decay$ (missing energy)

Standard model decay: o-Ps $\rightarrow 3\gamma$ \rightarrow energy deposition of 1022 keV (Ps mass, E = mc²)

Experimental signature: $oPs \rightarrow invisible decay$ (missing energy)

Invisible decay: o-Ps \rightarrow oPs' \rightarrow 3 γ ' \rightarrow no energy deposition (event compatible with 0 energy)

Search for oPs \rightarrow invisible decay (aerogel experiment)

A. Badertscher, P. Crivelli et al., Phys. Rev. D. 75, 032004 (2007)

No events in the signal region

- \rightarrow Upper bound : Br(oPs \rightarrow invisible) \leq 4.2 x 10⁻⁷
- \rightarrow Stringent limit on physics beyond the standard model

Search for oPs \rightarrow invisible decay (aerogel experiment)

A. Badertscher, P. Crivelli et al., Phys. Rev. D. 75, 032004 (2007)

Aerogel target, SiO2 grains 100 nm

Collisions with matter destroy coherence of oscillation suppressing o-Ps - o-Ps'conversion $\sim \sqrt{N_{\text{collisions}}}$. Has to be taken into account (large systematic uncertainty) \rightarrow limit on $\epsilon \leq 1.5 \times 10^{-7}$

Search for oPs \rightarrow invisible decay in a vacuum cavity

Ps mean free path in a vacuum cavity: 30 mm → 1-2 collision instead of 10⁴
 Cross check: change Ps velocity ~ N_{coll} Number of signal 2 times smaller without affecting the background!
 P.Crivelli et al., JINST 5, P08001 (2010)

Positron beam

Hermetic gamma detector

Low energy positron beam - tagging

, BB(t)

Positron-positronium converter - porous SiO₂

P. Crivelli, U. Gendotti, A. Rubbia, L. Liszkay, P. Perez, C. Corbel, Phys. Rev. A81, 052703 (2010)

Detection of annihilation photons

C. Vigo, L. Gerchow, L. Liszkay, A. Rubbia, and P. Crivelli Phys. Rev. D 97, 092008 (2018)

$oPs \rightarrow invisible decay in a vacuum cavity - first results (2018)$

First results: no excess above expected background observed
 → limit similar to aerogel experiment but without systematic related to collisions.

C. Vigo, L. Gerchow, L. Liszkay, A. Rubbia, and P. Crivelli Phys. Rev. D 97, 092008 (2018)

• Main limitations: accidental triggers, positronium escaping the detection region

Setup Improvement

- e+ flux improved by 1 order of magnitude (W meshes cryogenic moderator)
- Redesign of vacuum cavity to reduce e- emission due to HV

$oPs \rightarrow invisible decay in a vacuum cavity - latest results (2019)$

M. Raaijmakers, L. Gerchow, B. Radics, A. Rubbia, C. Vigo and P. Crivelli, arXiv 1905.0912

Time distribution of positrons on target

Time distribution of events compatible with 0-energy Shape of signal or signal-like background driven by e+ arrival on target

Summary and Outlook

- Latest results: no excess above expected background observed
 → for the first time limit comparable to contraints from cosmology.
- Main limitations: accidental triggers, positronium escaping the detection region

Possible improvements

- Higher e+ flux (Neon moderator) and better energy spread (Ni/W remoderator)
- Implementation of 10-20 nm carbon foil to block Ps escaping the detection region

• GOAL: reach a sensitivity on mixing strength of $\epsilon \sim 10^{-9}$

(not excluded by cosmology, motivated by BSM theories, cross check DAMA claim....)

Acknowledgments

THANK YOU SO MUCH FOR YOUR ATTENTION!

ETH Zurich group: Prof. André Rubbia, Balint Radics and Lars Gerchow Undergraduate Students: Mark Raaijmakers, Alessandro Battaglioni and Hevjin Yarar

Former members: David Cooke and Carlos Vigo

A special thank to Sergei Gninenko, Alexander Belov, Laszlo Liszkay, Rich Vallery and Flip Tanedo (for letting me adapt some of his slides)

Grant No. ETH-35-14-2

