Challenges in the Boron Neutron Capture Therapy

Michał Silarski Jagiellonian University

- Introduction
- Neutron sources for BNCT
- Boron carriers
- Dose and boron distribution monitoring
- Gadolinium Neutron Capture Therapy
- Summary

Narodowe Centrum Badań i Rozwoju

3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics Kraków, 23-28 June 2019

Introduction

- Therapy used against highly malignant and therapeutically resistant tumors:
 - gliobastoma multiforme)
 - malignant melanoma
 - head and neck recurrent cancers
 - Malignant pleural mesothelioma
- Irradiation with (epi)thermal neutrons
- ¹⁰B transfered selectively to the tumor cells
- High LET within a single cell

http://www.jsnct.jp/e/index.html; Kawasaki Medical School

2

Introduction

So far only ¹⁰B and Gd were considered as "targets" for NCT

Compound Biological Effectiveness

Relative Biological Effectiveness

The in-air neutron beam recommendations by the International Atomic Energy Agency:

Parameter	Recommendations
Φ_{epi} (0.1 eV <e<sub>n<10 keV) [cm⁻²s⁻¹]</e<sub>	>10 ⁹
$\Phi_{epi}/\Phi_{thermal}$	> 20
Φ_{epi} / Φ_{fast}	>100
D_{fast}/Φ_{epi} [Gy cm ²]	< 2*10 ⁻¹³
D_{γ}/Φ_{epi} [Gy cm ²]	< 2*10 ⁻¹³

Nuclide	Reaction	σ [b]
³ He	(n,p)	5333
⁶ Li	(n,α)	940
¹⁰ B	(n,α)	9835
¹¹³ Cd	(n,γ)	20600
¹³⁵ Xe	(n,γ)	2720000
¹⁴⁹ Sm	(n,γ)	42080
¹⁵¹ Eu	(n,γ)	9200
¹⁵⁵ Gd	(n,γ)	61100
¹⁵⁷ Gd	(n,γ)	259000
¹⁴⁷ Hf	(n,γ)	561
¹⁹⁹ Hg	(n,γ)	2150

(Wolfgang A.G. Sauerwein, A. Wittig, R. Moss, Y. Nakagawa "Neutron capture therapy", Springer)

H. Naeem et al., Journal of the Korean Physical Society, 70 (2017) 816

BNCT facilities around the world (2016)

Neutron sources for BNCT

Reactors

- High neutron flux (e.g. Maria: ~10¹⁴ cm⁻²s)
- Expensive and complex
- low public acceptability
- require complicated licensing procedures

Isotopic sources (e.g. Sb-Be, Am-Be)

- High activities needed (orders of magnitude higher than therapeutic gamma sources)
- Cannot be switchched off
- Never used, simulations showed feasibility of such therapy [M. Golshanian et al., Nucl.
 Inst. Meth. A 835 (2016) 182]

Neutron sources for BNCT

Accelerator sources

- Expensive
- Require a lot of space
- Most popular reactions: ⁷Li(p,n)⁷Be and ⁹Be(p,n)⁹B
- Target cooling problems for high proton intensity

Neutron sources for BNCT

Neutron generators: DD or DT

- Small size and cost
- Fast, monochromatic neutrons
- Max. intensities ~ 10¹¹/s (DD) -10¹³(DT) [Phoenix]
- Never used so far (too low neutron intensities)
- Each of the source need a Beam Shaping Assembly to form the desired epithermal neutron beam

Neutron Source Overview

https://newatlas.com/sandia-neutristor-neutron-generatorchip/23856/#gallery

7

Boron carriers

- Selective accumulation (Tumor/Normal >3) with ¹⁰B concentration of 20 to 40 ppm
- Low toxicity
- Not metabolized in the tumor
- No pharmaceutical effects themselves (boron delivery molecule only)
- BSH (disodium mercaptoundecahydrododecaborate)
 - Low accumulation inside tumor cells (it stays in the intercellular spaces)
- L-BPA (L-p-Boronophenylalanine)
 - Administered combined with a water-soluble substance such as D-fructose
 - does not accumulate in slowly proliferating malignant cells

http://www.jsnct.jp/e/about_nct/houso.html

% ID /g tissue

Boron carriers

- Intensive studies are ongoing to increase the tumor selectivity and intracellular ••• delivery of ¹⁰B-compounds
 - BSH connected to e.g. protein, peptide, small-interfering RNA...
 - Carborane-bearing pullulan nanogels [R. Kawasaki et al., Biochemical and Biophysical Research Communications 483 (2017) 147]
 - BSH-polymer conjugates, e.g. PEG-b-P(Glu-SS-BSH) [P. Mi et al., Journal of Controlled Release 254 (2017) 1] COOH

Pose and boron distribution monitoring

Magnetic Resonance Imaging (MRI)

- Non-invasive imaging of boron distribution
- Sensitive to ¹⁰B and ¹¹B isotopes

Activation Gamma Radiation Analysis

- Gamma quanta due to neutron capture on ¹⁰B (E_v = 0.478 MeV)
- Radiation of tissue activation (H,C,N,...)
- A fast method that allows in vivo imaging also during therapy

Positron Emission Tomography

- Boron carrier labeled with B⁺ active element:
- L-F-Boronophenylalanine [Imahori Y. et al. J Nucl Med. 39 (1998) 325]
- ⁶⁴Cu-labeled BSH-3R-DOTA
 [Y. Iguchi et al., Biomaterials 56 (2015) 10]
- Non-invasive imaging of boron distribution in the patient's body at each stage of therapy (resolution ~ 4-6 mm)

http://www.jsnct.jp/e/about_nct/pet.html

Alternatives to Boron

- 157 Gd(n, γ)¹⁵⁸Gd reaction has 60 times bigger cross section than the capture on 10 B
- Easy assessment of the Gd concentration in the tissue to be used in the treatment by MRI
- GdNCT = short range contribution (Auger electrons) + long range products (gammas)
- Efficient therapy demands Gd transfer to the cell nucleus [S. A. Enger et al., Radiation Measurements 59 (2013) 233]

Summary

physicsworld Q

f y E Magazine | Latest - | People - |

RADIOTHERAPY | RESEARCH UPDATE

Boron neutron capture therapy progresses towards clinical cancer treatments

17 May 2019 Tami Freeman

*BACKUP

Table 1.1 Isotopes with highvalues of thermal neutroncapture cross sections [4–7]

(Wolfgang A.G. Sauerwein, A. Wittig, R. Moss, Y. Nakagawa "Neutron capture therapy", Springer

Pierwiastki emitujące kw. Gamma po wychwycie: efekt biologiczny mniejszy od boru, ale dawka rozłożona bardziej homogenicznie w większych obszarach

- Gadolin daje jeszcze możliwość obrazowania z MRI, ale nie wykazano skuteczności tego obrazowania
- Po pochłonięciu neutronu emituje kwanty gamma o łącznej energii ~8 MeV
- Być może reakcja z litem byłaby dobra, ale przekrój czynny jest sporo mniejszy...

Nuclide	Interaction	Cross section σ_{th} (b)
³ He	(n,p)	5,333
⁶ Li	(n,α)	940
$^{10}\mathbf{B}$	(n,α)	3,835
¹¹³ Cd	(n,γ)	20,600
$^{135}Xe^{a}$	(n,γ)	2,720,000
¹⁴⁹ Sm	(n,γ)	42,080
¹⁵¹ Eu	(n,γ)	9,200
¹⁵⁵ Gd	(n,γ)	61,100
¹⁵⁷ Gd	(n,γ)	259,000
¹⁴⁷ Hf	(n,γ)	561
¹⁹⁹ Hg	(n,γ)	2,150
²³⁵ U ^a	(n,f)	681
241 Pu ^a	(n,f)	1,380
²⁴² Am ^a	(n,f)	8,000

^aRadioactive

$$\begin{bmatrix} {}^{4}_{2} \text{ He} \end{bmatrix} + \begin{bmatrix} {}^{1}_{0} \text{ Li} \end{bmatrix} + 2.79 \text{ MeV (6.1\%)}$$

$$\begin{bmatrix} {}^{10}_{5} \text{B} \end{bmatrix} + \begin{bmatrix} {}^{1}_{0} \text{n} \end{bmatrix} + \begin{bmatrix} {}^{11}_{5} \text{B} \end{bmatrix}^{*}$$

$$\begin{bmatrix} {}^{4}_{2} \text{ He} \end{bmatrix} + \begin{bmatrix} {}^{7}_{3} \text{Li} \end{bmatrix}^{*} + 2.31 \text{ MeV (93.9\%)}$$

$$\begin{bmatrix} {}^{7}_{3} \text{Li} \end{bmatrix} + \gamma (0.48 \text{ MeV})$$