Calculations of mesic (K^- , η) nuclei

J. Mares

Nuclear Physics Institute, Rez

+

A. Cieply, J. Hrtankova, M. Schäfer (NPI, Rez)

B. Bazak, N. Barnea, E. Friedman, A. Gal

(the Hebrew University, Jerusalem)

3rd Jaggiellonian Symposium on Fundemantal and Applied Subatomic Physics, Krakow, 24 - 28 June, 2019

$\bar{K}N$ and ηN interactions

- chiral SU(3)_L ×SU(3)_R meson-baryon effective Lagrangian for $\{\pi, K, \eta\} + \{N, \Lambda, \Sigma, \Xi\}$
- \exists resonances (e.g. $\Lambda(1405)$) $\Rightarrow \chi$ PT not applicable \rightarrow
- nonperturbative coupled-channel resummation techniques

$$T_{ij} = V_{ij} + V_{ik}G_{kl}T_{lj}, V_{ij}$$
 derived from \mathcal{L}_{χ}

Effective potentials are constructed to match the chiral meson-baryon amlitudes (up to NLO order)

K^-N and ηN interactions

- Channels involved: $\pi\Lambda, \pi\Sigma, \overline{K}N, \eta\Lambda, \eta\Sigma, K\Xi$ (S = -1) $\pi N, \eta N, K\Lambda, K\Sigma, (\eta'N)$ (S = 0)
- Model parameters fixed in fits to low-energy meson-nucleon data:
- S = -1 sector ($\bar{K}N$ related channels)
 - kaonic hydrogen data (SIDDHARTA)
 - K⁻p threshold branching ratios
 - K⁻p low energy X-sections
- S = 0 sector (ηN related channels)
 - πN amplitudes from SAID database (S_{11} and S_{31} partial waves)
 - $\pi^- p \rightarrow \eta n$ reaction X-sections
 - P. C. Bruns, A. Cieply, arXiv:1903.10350 [nucl-th] η_0 meson singlet field included explicitly $\pi^- p \rightarrow K^0 \Lambda$ and $\pi^- p \rightarrow \eta' n$ reaction X-sections

K^-N scattering amplitudes (free space)

Prague (P) Kyoto-Munich (KM) Murcia (M1 and M2) Bonn (B2 and B4) Barcelona (BCN) A. Cieply, J. Smejkal, Nucl. Phys. A 881 (2012) 115
Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881 (2012) 98
Z. H. Guo, J. A. Oller, Phys. Rev. C 87 (2013) 035202
M. Mai, U.-G. Meiner, Nucl. Phys. A 900 (2013) 51
A. Feijoo, V. Magas, A. Ramos, Phys. Rev. C99 (2019) 035211

ηN scattering amplitudes (free space)

line	$a_{\eta N}$ [fm]	model
dotted short-dashed dot-dashed long-dashed full	0.46+i0.24 0.26+i0.25 0.96+i0.26 0.38+i0.20 0.67+i0.20	 N. Kaiser, P.B. Siegel, W. Weise, PLB 362 (1995) 23 T. Inoue, E. Oset, NPA 710 (2002) 354 (GR) A.M. Green, S. Wycech, PRC 71 (2005) 014001 (GW) M. Mai, P.C. Bruns, UG. Meißner, PRD 86 (2012) 094033 (M2) A. Cieply, J. Smejkal, Nucl. Phys. A 919 (2013) 334 (CS)

ηN scattering amplitudes (free space)

An explicit inclusion of the singlet meson field η_0 leads to a more attractive ηN interaction – compare the case with $\eta_0 - \eta_8$ mixing (blue line) and without $\eta_0 - \eta_8$ mixing (the CS model, black dotted line) - P. C. Bruns, A. Cieply, arXiv:1903.10350 [nucl-th]

$\bar{K}N$ vs. η amplitudes

• Strong energy dependence of the scattering amplitudes !

	$E_{ m th}$ (MeV)	resonance
ĒΝ	1434	Λ(1405)
ηN	1486	N*(1535)

 $\Lambda(1405)$ resonance below threshold

vs.

 $N^*(1535)$ resonance above threshold

Energy dependence

- K^-N amplitudes are a function of \sqrt{s} $(s = (E_N + E_{K^-})^2 - (\vec{p}_N + \vec{p}_{K^-})^2)$
- K^-N cms frame $\rightarrow K^-$ -nucleus frame $\vec{p}_N + \vec{p}_{K^-} \neq 0$ A. Cieplý, E. Friedman, A. Gal, D. Gazda, J. Mareš, Phys. Lett. B 702 (2011) 402 e.g., in many body systems (atoms, nuclei):

$$\sqrt{s} = E_{th} - B_N \frac{\rho}{\bar{\rho}} - \xi_N \left[\frac{B_{K^-}}{\rho_{max}} + 23 \left(\frac{\rho}{\bar{\rho}} \right)^{2/3} + V_C \left(\frac{\rho}{\rho_{max}} \right)^{1/3} \right] + \xi_{K^-} \operatorname{Re} V_{K^-}(r) ,$$

where $B_N = 8.5$ MeV and $\xi_{N(K^-)} = m_{N(K^-)}/(m_N + m_{K^-})$; Low-density limit $\delta\sqrt{s} \to 0$ as $\rho \to 0$, where $\delta\sqrt{s} = \sqrt{s} - E_{th}$.

• B_{K^-} and $V_{K^-} \Rightarrow$ self-consistency scheme

• For few - body
$$\eta$$
 nuclear systems:
 $\langle \delta \sqrt{s} \rangle = -\frac{B}{A} - \frac{A-1}{A} B_{\eta} - \xi_N \frac{1}{A} \langle T_N \rangle - \xi_A \xi_\eta \left(\frac{A-1}{A}\right)^2 \langle T_\eta \rangle$,
where $\Xi_A = (Am_N/(Am_N + m_\eta), T_N (T_\eta)$ is nuclear (η) kinetic energy

Energy shift in η nuclei

• In-medium (subthreshold) energy shift:

 $\delta\sqrt{s} = -B_N \frac{\rho}{\bar{\rho}} - \xi_N B_\eta \frac{\rho}{\rho_0} - \xi_N T_N (\frac{\rho}{\rho_0})^{2/3} + \xi_\eta \operatorname{Re} V_\eta(\sqrt{s},\rho)$

• B_{η} , V_{η} , $\rho \Rightarrow$ selfconsistent solution \rightarrow 40 - 60 MeV energy shift at ρ_0 – larger than shift by B_{η} (GR) or by 30 MeV (Haider, Liu)

• selfconsistent $\delta\sqrt{s}$ reduces both 1s B_η and Γ_η

In-medium K^-N (ηN) amplitudes

nuclear medium impact: Pauli (anti)correlations, hadron self-energies

WRW method (based on multiple scattering theory)
 T. Wass, M. Rho, W. Weise, Nucl. Phys. A 617 (1997) 449

$$F_{1} = \frac{\frac{\sqrt{s}}{m_{N}}F_{K^{-}n}(\sqrt{s})}{1 + \frac{1}{4}\xi_{k}\frac{\sqrt{s}}{m_{N}}F_{K^{-}n}(\sqrt{s})\rho} , \quad F_{0} = \frac{\frac{\sqrt{s}}{m_{N}}[2F_{K^{-}\rho}(\sqrt{s}) - F_{K^{-}n}(\sqrt{s})]}{1 + \frac{1}{4}\xi_{k}\frac{\sqrt{s}}{m_{N}}[2F_{K^{-}\rho}(\sqrt{s}) - F_{K^{-}n}(\sqrt{s})]\rho}$$

where $\xi_{k} = \frac{9\pi}{p_{F}^{2}}4\int_{0}^{\infty}\frac{dt}{t}\exp(iqt)j_{1}^{2}(t), \quad q = \frac{1}{p_{F}}\sqrt{\omega_{K^{-}}^{2} - m_{K^{-}}^{2}}.$

P + Pauli + SE model (Green function integral modified)
 A. C., E. Friedman, A. Gal, D. Gazda, J. Mareš, Phys. Rev. C 84 (2011) 045206

$$F_{ij}(\sqrt{s};\rho) = \left[V^{-1}(\sqrt{s}) - G(\sqrt{s};\rho)\right]_{ij}^{-1}$$
$$G_j(\sqrt{s};\rho) = -4\pi \int_{\Omega_j(\rho)} \frac{d^3p}{(2\pi)^3} \frac{g_j^2(p)}{p_j^2 - p^2 - \prod_j(\sqrt{s},\vec{p};\rho) + i0}$$

In-medium modified $\bar{K}N$ amplitudes

Energy dependence of reduced free-space (dotted line) $f_{K^-N} = \frac{1}{2}(f_{K^-p} + f_{K^-n})$ amplitude compared with WRW modified amplitude (solid line), Pauli (dashed line), and Pauli + SE (dot-dashed line) modified amplitude for $\rho_0 = 0.17$ fm⁻³ in the P model.

η in few-body systems

Variational calculations (hypersherical basis , Stochastic Variational Method (SVM)) N. Barnea, E. Friedman, A. Gal, PLB 747 (2015) 345, NPA 968 (2017) 35; M.Schäfer, N. Barnea, E. Friedman, A. Gal, J. Mares, EPJ Web Conf. 199, 02022 (2019)

- NN: Argonne AV4', Minnesota MN potential
- ηN : complex E-dep. local potential derived from the chiral coupled-channels model: $v_{\eta N}(E, r) = -\frac{4\pi}{2\mu_{\eta N}} b(E) \rho_{\Lambda}(r),$ where $E = \sqrt{s} - \sqrt{s_{\text{th}}}, \quad \rho_{\Lambda}(r) = (\frac{\Lambda}{2\sqrt{\pi}})^3 exp\left(-\frac{\Lambda^2 r^2}{4}\right)$

b(E) fitted to phase shifts δ derived from $F_{\eta N}(E)$ in GW and CS models; scale Λ inversely proportional to the $v_{\eta N}$ range

π-less EFT at LO - N. Barnea, B. Bazak, E. Friedman, A. Gal, PLB 771 (2017) 297

$\eta NN, \eta^{3}He, \eta^{4}He and \eta^{6}Li systems$

ηNN

- unbound
- (N. Barnea, E. Friedman, A. Gal, Phys. Lett. B 747 (2015) 345)

$\eta^{3}He$

$V_{\eta N}$	V _{NN}	$\delta\sqrt{s_{sc}}$	B_η	Γ_η
GW, $\Lambda = 2$	MN	-9.385	0.099	1.144
	AV4'	-11.478	-0.028	0.769
GW, $\Lambda = 4$	MN	-13.392	0.990	3.252
	AV4'	-14.881	0.686	2.438
CS, $\Lambda = 2$	MN	-8.388	-0.217	0.057
CS, $\Lambda = 4$	MN	-8.712	-0.161	0.227

(N. Barnea, E. Friedman, A. Gal, Nucl. Phys. A 968 (2017) 35)

MN - (D. R. Thomson, M. LeMere, Y. C. Tang, Nucl. Phys. A 286 (1977) 53) AV4' - (R. B. Wiringa, S. C. Pieper, Phys. Rev. Lett. 89 (2002) 182501)

$\eta NN, \eta^{3}He, \eta^{4}He and \eta^{6}Li systems$

		$\eta^4 He^{-1}$			$\eta^6 Li$ ²		
$V_{\eta N}$	V _{NN}	$\delta\sqrt{s_{sc}}$	B_{η}	Γ_{η}	$\delta\sqrt{s_{sc}}$	B_{η}	Γ_η
GW, $\Lambda = 2$	MN	-19.48	0.96	1.98	-21.47	2.17	3.00
	AV4'	-23.65	0.38	1.21	-	-	-
GW, $\Lambda = 4$	MN	-29.75	4.69	4.50	-33.11	6.40	4.90
	AV4'	-32.41	3.51	3.62	-	-	-
CS, $\Lambda = 2$	MN	-16.70	-0.16	0.13	-16.07	-0.08	0.85
CS, $\Lambda = 4$	MN	-19.25	0.47	0.90	-21.08	0.68	1.44

- 1 (N. Barnea, E. Friedman, A. Gal, Nucl. Phys. A 968 (2017) 35)
- 2 (M.Schäfer, N. Barnea, E. Friedman, A. Gal, J. Mares, EPJ Web Conf. 199, 02022 (2019), η^6 Li calculated only for MN V_{NN} potential

Imaginary part of the $V_{\eta N}$ potential

 $\Gamma_{\eta} = -2 \langle \Psi_{\rm gs} | {\rm Im} V_{\eta N} | \Psi_{\rm gs} \rangle$ (real) vs. solution of eigenvalue problem for a complex Hamiltonian (imaginary part of the $V_{\eta N}$ included) (cmplx)

η^{3} He and η^{4} He systems (for MN and GW potentials)

η^{3}	'He	B_{η} [MeV]	$\Gamma_{\eta} [\text{MeV}]$	$\delta \sqrt{s_{sc}}$ [MeV]
$\Lambda = 2$	(real)	0.11	1.37	-9.23
	(cmplx)	-0.25	1.32	-8.87
$\Lambda = 4$	(real)	1.01	3.32	-13.18
	(cmplx)	0.36	3.44	-12.72

$\eta^4 \text{He}$		B_{η} [MeV]	$\Gamma_{\eta} [\text{MeV}]$	$\delta \sqrt{s_{sc}}$ [MeV]
$\Lambda = 2$	(real)	0.97	2.17	-19.64
	(cmplx)	0.77	2.22	-19.50
$\Lambda = 4$	(real)	4.62	4.38	-29.73
	(cmplx)	4.40	4.41	-29.60

Coulomb interaction included

- ${
 m Im} V_{\eta N}$ acts as a repulsion decreasing the binding of η
- effect of $\mathrm{Im} V_{\eta N}$ is rather significant in $\eta^{3} \mathrm{He}$ (close to the threshold), decreases in $\eta^{4} \mathrm{He}$ (larger $\delta \sqrt{s_{sc}}$), and becomes negligible in $\eta^{6} \mathrm{Li}$

chirally motivated $K^-N(\eta N)$ amplitudes in a free space $\downarrow \downarrow$ in-medium amplitudes $\downarrow \downarrow$ $K^-(\eta)$ -nuclear optical potential $\downarrow \downarrow$ solve the Klein-Gordon equation to get $K^-(\eta)$ -nuclear (or K^- -atomic) states

- accounting for Pauli principle (and hadron self-energies)
- energy dependence of the optical potential treated self-consistently

E. Friedman, A. Gal, Nucl. Phys. A 959 (2017) 66 :

- χ^2 fits to kaonic atoms data (energy shifts, widths and yields = upper level widths)
- optical potentials $V_{K^-} = V_{K^-}^{(1)}$ constructed from the chirally motivated amplitudes fail to describe the data
- K[−] interactions with two and more nucleons are needed,
 e.g. K[−] + N + N → Y + N

$$2\mathsf{Re}(\omega_{\mathcal{K}^{-}})V_{\mathcal{K}^{-}}^{(2)} = -4\pi \,B\,(\frac{\rho}{\rho_{0}})^{\alpha}\rho$$

where *B* is a complex parameter and α is positive

• total K^- optical potential $V_{K^-} = V_{K^-}^{(1)} + V_{K^-}^{(2)}$ such a potential derived for each chiral model fits the K^- atom data

Kaonic atoms analysis

additional constraint - fractions of single-/multi- nucleon absorption at rest: H. Davis et al., Nuovo Cimento 53 (1968) 313 (Berkeley); J.W. Moulder et al., Nucl. Phys. B35 (1971) 332 (BNL);

C. Vander Velde-Wilquet et al., Nuovo Cimento 39A (1977) 538 (CERN)

Fraction of single-nucleon absorption for the chiral approaches. Solid circles for lower states, open squares for upper states. Left: B2, B4, M1 and M2, Right: P1, KM1 for $\alpha = 1$ (solid) and P2, KM2 for $\alpha = 2$ (dashed).

Only P, KM and BCN models found acceptable.

The respective contributions from K^-N and K^-NN potentials to the total real and imaginary K^- optical potential in the ²⁰⁸Pb+ K^- nucleus, calculated self-consistently in the KM1 model (the FD variant). The single-nucleon K^- potential (green solid line) of the KM model is shown for comparison. Shaded area = uncertainties in the *KNN* part input.

J. Hrtankova, J. Mares, Phys. Lett. B 770 (2017) 342; Phys. Rev. C 96, 015205 (2017)

K^-N vs. K^-NN absorption in ²⁰⁸Pb

Ratios of $\text{Im} V_{K^-}^{(1)}$ and $\text{Im} V_{K^-}^{(2)}$ potentials to the total $\text{Im} V_{K^-}$ as a function of radius, calculated self-consistently for the ²⁰⁸Pb+ K^- system using the KM and P models. The vertical lines mark the nuclear surface density of 0.15 ρ_0 .

 $\bar{K}NN$ absorption dominates in nuclear interior, the $\bar{K}N$ absorption at low densities.

K^{-} 1s binding energies and widths

... when the K^-NN phenomenological term $V_{K^-}^{(2)} \sim B(\rho/\rho_0)^{\alpha}$ ($\alpha = 1$ or 2) is added, some states are not bound and the absorption widths become larger than the corresponding binding energies

KM model		lpha=1		lpha=2		
		KN	HD	FD	HD	FD
¹⁶ O	B_{K^-}	45	34	not	48	not
	$\Gamma_{K^{-}}$	40	109	bound	121	bound
⁴⁰ Ca	B_{K^-}	59	50	not	64	not
	$\Gamma_{K^{-}}$	37	113	bound	126	bound
²⁰⁸ Pb	$B_{K^{-}}$	78	64	33	80	53
	Γu	38	108	273	122	429
	• K -			=10		.=
P	° model		α	= 1	α	= 2
160	$\frac{B_{K^-}}{B_{K^-}}$	64	α 49	= 1 not	α 63	= 2 not
160	$\frac{1}{B_{K^-}}$ Γ_{K^-}	64 25	α 49 94	= 1 not bound	α 63 117	= 2 not bound
¹⁶ O ⁴⁰ Ca	$\frac{F_{K}}{B_{K}}$ B_{K} B_{K}	64 25 81	α 49 94 67	= 1 not bound not	α 63 117 82	= 2 not bound not
¹⁶ 0	$\frac{B_{K^-}}{B_{K^-}}$ $\frac{B_{K^-}}{B_{K^-}}$ $\frac{B_{K^-}}{\Gamma_{K^-}}$	64 25 81 14	α 49 94 67 95	= 1 not bound not bound	α 63 117 82 120	= 2 not bound not bound
¹⁶ O ⁴⁰ Ca ²⁰⁸ Pb	$\frac{B_{K^-}}{B_{K^-}}$ $\frac{B_{K^-}}{F_{K^-}}$ $\frac{B_{K^-}}{B_{K^-}}$	64 25 81 14 99	α 49 94 67 95 82	= 1 not bound not bound 36	α 63 117 82 120 96	= 2 not bound not bound 47

J. Hrtankova, J. Mares, Phys. Lett. B 770 (2017) 342; Phys. Rev. C 96, 015205 (2017)

Microscopic model for in-medium K^-NN absorption

Can we improve on the K^-NN absorption? Earlier microscopic treatment in T. Sekihara et al. - PRC 86, 065205 (2012) for the K^-NN , free space $\bar{K}N$ amplitudes H. Nagahiro et al. - PLB 709, 87 (2012) for the $\eta'NN$ system New work on the $\bar{K}NN$ system employs the in-medium BCN and P amplitudes: J. Hrtankova, A. Ramos - prepared for publication (2019)

K⁻NN self-energy

$$\begin{array}{lll} \Pi_{AB}(\vec{q},q_0) & = & -\mathrm{i} t_{K^-N_1 \to Aa} t^*_{K^-N_1 \to Ab} V_{aBN_2} V_{bBN_2} \cdot \\ & \cdot & \int \frac{d^4 q}{(2\pi)^4} U_{AN_1}(p-q) U_{BN_2}(q) q^2 \frac{1}{q^2 - m_a^2} \frac{1}{q^2 - m_b^2} \end{array}$$

• t-matrices taken from chiral meson-baryon models

K^-NN absorption

• AMADEUS measurement of the Λp to $\Sigma^0 p$ production rate in K^-NN QF absorption

$$\mathcal{R} = \frac{\mathrm{BR}(K^- pp \to \Lambda p)}{\mathrm{BR}(K^- pp \to \Sigma^0 p)} = 0.7 \pm 0.2(\text{stat.})^{+0.2}_{-0.3}(\text{syst.})$$

R. Del Grande et al. - Eur. Phys. J. C79 (2019) 190

• two settings of the K^-NN model used assuming $B_{K^-} = 0$ and 50 MeV; the Pauli blocked (WRW) amplitudes give the ratio \mathcal{R} much closer to the experimental rate than the free amplitudes \Rightarrow medium effects are relevant!

K⁻NN absorption

Ratio of single nucleon (K^-N) and two-nucleon (K^-NN) absoptive potentials to the total absorptive potential $(\text{Im }V_{K^-})$. The grey area shows the region of densities probed by low energy K^- .

$$B_K = 0$$
 MeV - $\bar{K}NN$ starts to dominate at $\rho \sim \rho_0$
 $B_K = 50$ MeV - $\bar{K}NN$ starts to dominate at $\rho \sim 0.7 \rho_0$

- Chirally motivated models provide different predictions for the K^-N and ηN amplitudes at subthreshold energies.
- In-medium kaons (eta's) probe energies 50-100 MeV (40-60 MeV) below threshold. A realistic treatment of the energy dependence and in-medium modifications (Pauli blocking) is essential.
- Large energy shift and rapid decrease of the ηN amplitudes below threshold \Rightarrow relatively small binding energies and widths of the calculated η nuclear states. Additional contribution to the η width due to $\eta N \rightarrow \pi \pi N$ and $\eta NN \rightarrow NN$ (not considered here) – estimated to add few MeV.
- ηd unbound, ${}^{3}_{\eta}$ He unbound ?, ${}^{4}_{\eta}$ He bound for the GW model
- Fits to kaonic atoms demonstrate the need of NN (or multinucleon) contribution to the K^- -nuclear optical potential. The P, KM and BCN models satisfy the additional constraint of 1N to 2N absorption rate.
- The inclusion of multinucleon absorption in the calculations of K⁻ quasi-bound states in many-body systems leads to huge widths, considerably exceeding the binding energies. (The conclusion does not apply to few body K⁻-nucleons systems.)
- Microscopical model for K^-NN absorption in nuclear matter has been developed using chiral $\bar{K}N$ amplitudes. The preliminary results look encouraging, the ratio of Λp to $\Sigma^0 p$ production measured by AMADEUS is reproduced by the model when the in-medium amplitudes are employed.