Development of new heavy and efficient scintillators for medical imaging and radiation detection

Hong Joo Kim*, Arshad Khan, Q.V. Phan Department of Physics, Kyungpook National Univ. Gul Rooh Department of Physics, Abdul Wali Khan Univ. Sang Jun Kang College of Liberal Arts, Semyung University Jakrapong Kaewkhao CEGM, Nakhon Pathom Rajabhat University

3rd Jagiellonian Symposium on Fundamental and Applic Subatomic Physics, Krakow, Poland, June 24-28, 2019

Application of Scintillators

Medical application

Nondestructive analysis

ress maps (MPa) for the two investigated samples.

High energy physics

Astro-particle physics,

Board inspection

Security check

X-ray scanning

Radiation monitoring

Scintillation Detectors

NaI(11) Spectrometer

Scintillation Surveyneter

-

한부

Positron Emission Tomography (PET)

POSiTRACE

Dual Mode PET/CT Oncology System

Detection Efficiency of X-ray and γ

Photoelectric effect : ρZeff3-4Compton scattering : ρPair production : ρZ

High $\rho \& Z_{eff}!$

Motivation

Our research work is to explore and develop new TI-based inorganic halide scintillators for different application such as high energy and nuclear physics, radiation monitoring, homeland security as well as medical imaging.

Alteration of the energy band gap, enhancement of Z_{eff} and density using Tl ion with high density (p=11.8 g/cm³) and high Z-number (Z=81). Disadvantage of Tl is highly toxic that extreme care should be taken. (ex: TlBr, KRS-5, KRS-6 CsI:Tl, NaI:Tl)

Not only with intrinsic luminescence of Tl, with Ce³⁺ and Eu²⁺ doping for the improvement of scintillation properties.

> They could be applied PET, SPECT, Gamma Camera & CT

Crystal growing system with Czochalski method

At KNU

岸

Bridgman Crystal Growing Methods

Crystal is growing in Bridgman furnace

Crystals growing at KNU for 20 years

Nal:TI, CsI(TI, Co3, Na), BGO, BSO, BGSO, SrWO4, CaMoO4, SrMoO4 et al.
 New material : BaSrCl2, CsCe2Cl7, Cs(Rb)2Li(Na)CeCl6, Cs2LiGd(Lu)Cl(Br)6:Ce, Li6Lu(Gd,Y)(Bo3)3, NaGd(Wo4)3, TI-based scintillators et al.

Experimental Setup

Elpasolite scintillators : X_2 YRe Z_6 w/wo Ce³+ doping (X=Cs, Rb; Y=Li, Na; Re= Rare Earth, and Z=Cl,Br,I)

Most studied examples: $Cs_2LiYCl_6:Ce(CLYC)$, $Cs_2LiLaCl_6:Ce$, $Cs_2LiLaBr_6:Ce$, $Cs_2LiLuCl_6:Ce$, $Rb_2LiYBr_6:Ce$ (neutron detection Studied by our group: $Cs_2LiCeCl_6$, $Cs_2LiCeBr_6$, $Cs_2NaCeCl_6$, $Cs_2NaCeBr_6$ $Cs_2LiGdCl_6:Ce$, $Cs_2LiGdBr_6:Ce$, $Cs_2NaGdCl_6:Ce$, $Cs_2NaGdBr_6:Ce$ $Rb_2LiGdCl_6:Ce$, $Rb_2LiGdBr_6:Ce$, $Rb_2LiCeCl_6$, $Rb_2LiCeBr_6$ $Cs_2LiLuBr_6:Ce$ => More than 13 publications and 4 patents

New High Z-number elpasolite scintillator? X-> TI $(Tl_2LiGdCl_6:Ce,Tl_2LiYCl_6:Ce,Tl_2LiGdBr_6 \& so on)$

Discovery of TI based scintillators

We started a pioneer work in 2009 on the development of TI-based compounds and published TI₂LiGdCI₆:Ce³⁺ paper as a first TI-based scintillator in 2015 and presented TI₂LiYCI₆:Ce³⁺ SCINT2015.

Ce-doped Tl₂LaCl₅ and Tl₂LaBr₅ Scintillators

Ce-doped Tl₂LiGdCl₆ single crystal

경북대학교 물리 및 에너지학부

Eu²⁺ doped TISr₂I₅

[14] Y. T. Wuet al., Cryst. Growth Des., 15 (2015) 3929.[15] L. Stand et al., Nucl. Instrum. Methods Phys. Res. A 780 (2015) 40.

 Improvement is expected with material purification, optimized with Eu²⁺-doping concentration and with co-doping.

Full peak efficiency comparison

경북대학교 물리 및 에너지학부

New crystal scintillators 2018

Tl₂ZrCl₆ crystal

경북대학교 물리 및 에너지학부

Tl₂HfCl₆ pulse height spectra

- Emission peak at 400 nm
- Light yield : 32.000 photons/MeV
- Energy resolution :4.0% @ 662keV
- Better than Cs₂HfCl₆

18₁₈

Summary and future perspect

 New TI-based scintillators are discovered and reported.
 Preliminary results showed promising performance with high light yield, high effective Z-number, fast decay time, good energy resolution and moderate density.

- Excellent detection efficiency of X- and gamma rays due to the high effective Z-number can be used for the radiation detection (ex: TISr₂I₅:Eu) and medical imaging (ex: Tl₂LaCl₅(Br₅):Ce) while Li-based scintillator can be used for neutron detection (ex: Tl₂LiYCl₆:Ce).
- Since, optimization of the growth condition, dopant concentration, co-doping and purification are under way, therefore, further improvement of the scintillation performance is expected.

Thank you for your attention!

X-ray Induced Emission Spectra

경북대학교 물리 및 에너지학부

21₂₁

Ce-doped Tl₂LiYCl₆ (TLYC)

[12] J. Glodo et al., IEEE Trans. Nucl. Sci., 55(3) (2008) 1206.
[13] R. Hawrami et al., IEEE Trans. Nucl. Sci., 63(6) (2016) 2838.

Compound	M. Point (°C)	Density g/cm ³	Ζ _{eff}	E.R @662 keV	L.Y (ph/MeV)	Decay time (ns)	Ref.
Cs ₂ LiYCl ₆	640	3.31	45	5.1%	20,000	129 + Slow	[12]
Tl ₂ LiYCl ₆	490	4.58	69	4.8%	30,500	57(9%) + Slow	[3,4]

 TLYC of both gamma and thermal neutron detection efficiency is better than the Cs₂LiYCl₆ reported by RMD group [13].

Ce-doped Tl₂GdCl₅

Compound	M.P (°C)	Density g/cm ³	Z _{eff}	E.R @662 keV	L.Y (ph/MeV)	Decay time (ns)
Tl ₂ GdCl ₅	490	5.10	71	5.0%	53,600	32 (76%)

Perovskite type ; TICaCl₃: Pure

Tl₂HfCl₆ crystal

Type of irra	Decay constants (s) and their relative intensities (% of total)						
diation	$\tau_{1}\left(I_{1}\right)$	$\tau_2(I_2)$	$\tau_{3}\left(I_{3}\right)$	$ au_4 \left(\mathbf{I}_4 \right)$			
γ	0.36(17.5)	1.04(61.2)	14.9(19.8)				
α	0.09(8.5)	0.46(28.6)	1.04(44.8)	11.2(17.9)			

경북대학교 물리 및 에너지학부

25₂₅