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– Motivation
• Time-of-flight resolution of J-PET
• Real time image reconstruction 
• Continuous geometry (no bins)

– Single-event TOF FBP
• Convolution vs sum: FBP in image space
• Adding time-of-flight
• 3D asymmetric kernel
• Kernel optimisation

– Results
• Spatial resolution of “big barrel”
• Image quality for ideal J-PET

- Summary and further plans
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In modern PET scanners, scintillation crystals (LSO:Ce, LYSO:Ce, LaBr
3
:Ce) are 

capable of achieving coincidence resolving time (CRT) of ~ 100 ps. The lowest 
announced value is 249 ps, in fact 214 ps (Biograph Vision scanner, Siemens)
[ordineingegneripisa.it/obj/files/documenti/2018.2.23.10.46.26_834.pdf].

Plastic scintillators used in Jagiellonian PET 
(J-PET) are superior time-wise, despite the 
worse efficiency: CRT of 70 ps – for 1-meter 
strips [Moskal P et al. PMB 2016].  The main 
factor is the readout – photomultipliers (PMs) 
attached at each end of the strips: silicon PM 
(SiPM) or tube PM (PMT).

For time-of-flight (TOF) available and CRT below 100 ps analytical 
reconstruction methods may outperform iterative ones 
[V Westerwoudt et al. IEEE Trans. Nucl. Sci. 2014].

Time-of-flight resolution of J-PETTime-of-flight resolution of J-PET
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TOF reconstructions produce comparable results for much lower statistics 
compared to non-TOF methods. Matched with small CRT, it substantiates image 
reconstruction on the fly during real time scans.

A platform based on Field Programm-
able Gate Array (FPGA) System-on-Chip 
(SoC) has already been implemented 
for J-PET [G Korcyl et al. IEEE Trans. 
Med. Im. 2018]. It performs event 
building, filtering, coincidence search 
and so-called Region-Of-Response (ROR) reconstruction, yet without filtered 
back projection (FBP) – only coordinates of the reconstructed points in 3D 
space. Newest solution (G.Korcyl presentation) – operate in projection space.

ROR implies that only small fraction of field-of-view (FOV) is processed for each 
event, hence it might be possible to add Ramp/Hann/Hamming filters.

Real time image reconstructionReal time image reconstruction

35-second scan
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For non-TOF scanners, the measured 3D data of N detected emissions can be 
expressed as a set of projections:
The construction of a scanner defines discrete sets of s, ϕ, ζ, θ which form 
possible projection elements (bins). Adding TOF would expand it to    .

However, continuous strips in J-PET do not 
fix ζ and θ. Besides, there are prospects 
for partial depth-of-interaction (DOI) 
information be extracted with the array 
of wavelength-shifting (WLS) strips 
[J Smyrski et al., N. Instr. Meth. Phys. Res. A 2017].

Using bins/projection
space is unpractical!

Continuous geometryContinuous geometry

{~p1,
~p2, ... ,

~pN},
~pk=(s ,ϕ ,ζ ,θ)k .

1-layer module 
(WLS on top)

Prototype 2-layer module (WLS 
sandwiched in between) with 
integrated readout 
electronics 

ℝ5
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FBP of one LORFBP of one LOR

n
ϕ

Non-TOF FBP (2D): image

Projection (sinogram): 
Convolution is used

[DL Bailey et al., PET Basic Science, 2005]  here only (w – Ram-Lak filter)
3D TOF FBP (arbitrary voxel v):

[Conti M et al. PMB 2005]
Forward and inverse Fourier transform, a filter in frequency domain             , 
TOF kernel h(t)… too cumbersome!

The alternative:  treat all lines-of-response (LORs) independently. 
One LOR reflects one point on a sinogram, filtered by w(s): 
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Single-event TOF FBPSingle-event TOF FBP
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Split the data into single-LOR backprojections first. 
We know how the reconstructed image looks like for 
one LOR. The sum of such images for all LORs will reflect 
the Filtered Back Projection (FBP) :

f(x, y) = Σ
ϕ
Σ

i
 n

ϕ w( x cos ϕ + y sin ϕ – s
i
(ϕ))

Options for filters: define analytically in image space (easy for Ram-Lak), 
use a table/polynome or create one image and move/rotate.

FBP in image space (2D)FBP in image space (2D)

FBP of five LORs FBP of five LORs 
(zoomed)(zoomed)
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Apply Gaussian kernel (with standard deviation σ
TOF

 calculated from 
coincidence resolving time, CRT), centered at the point estimated from TOF:

The resulting map of intensities will be sparse, hence it is reasonable to 
restrict/truncate the known outcome – defined analytically or as an image. 

The narrower the TOF kernel is, the less memory is needed to update the 
result: the fastest will be the combination of SiPM/WLS, the slowest – PMT 
readout. 
“Old” LORs could be dropped – a time window for real time imaging is possible!

Adding time-of-flight (2D)Adding time-of-flight (2D)

TOF FBP of five LORs TOF FBP of five LORs 
(zoomed)(zoomed)
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TOF Gaussian applied here:

TOF FBP of one LORTOF FBP of one LOR
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Apply TOF kernel along LOR (Gaussian),
Ram-Lak filter normal to LOR in XY and
a small Gaussian along Z (depends on 
the distance between slices).

Update intensity within a small volume,
limited by at least ±3.3σ for Gaussian and 
±9.0Δs for Ram-Lak (Δs – sampling for the
displacement s in projection space).

The volume of the ellipsoid is
much smaller than the whole FOV,

resembles ROR in FPGA solution.

3D asymmetric kernel3D asymmetric kernel
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There are distinct similarities with multivariate kernel density estimation 
(KDE), applied to annihilation positions, estimated directly from TOF . 
For a d-dimensional dataset X

1
, X

2
, ..., X

n
 of the size n, the KDE is:

x = (x
1
, x

2
, ..., x

d
), K(·) – spherically symmetric multivariate kernel (e.g. Gaussian), 

H – bandwidth matrix, symmetric and positive definite. Its choice is crucial!
There are lots of algorithms for bandwidth selection, e.g.: 

– asymptotic approximation mean integrated squared error (AMISE)
– plug-in bandwidth selector (multistage) [Chacon JE et al. Test 2010]

Elements of matrix H << σ
TOF 

< σ
Z
!

It is reasonable to optimise Gaussian 
kernels to smaller sigmas, otherwise it 
imposes additional smearing along Z. 
(example for 1-mm source, ideal scanner,
[Kowalski P et al. PMB 2018])

Kernel optimisationKernel optimisation

^f n H (x )=n−1∑
i=1

n

|H|
−1 /2

K [ H−1/2
(x−X i)]

TOF FBPTOF FBP TOF KDETOF KDE

Z

X
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X

Z

Y

Jagiellonian PET (“big barrel”): 3 layers of plastic scintillator 
strips, 192 detector strips of the size: 7 mm × 19 mm × 500 mm
Radii:

- 425.0 mm (48 strips)
- 467.5 mm (48 strips)
- 575.0 mm (96 strips)

Gaps between strips are dictated 
by the size of PMT readouts.

The data: 
– simulations made in GATE for 1-mm spherical NEMA source (370 kBq), at six 
positions (x = 1 cm/10 cm/20 cm, z = 0/18.75 cm) , 100,000 coincidences per one set.

– early experiment (Run-4) , the source size may 
differ from NEMA + higher activity, placed at
(y = 1 cm/10 cm/20 cm, z = 0/–18.75 cm), 
150,000 events taken from each measurement.

Courtesy of Monika Pawlik-Niedźwiecka

Results: spatial resolutionResults: spatial resolution
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Truncation problem and scanner sensitivity: sparse 
multilayer transverse geometry of “big barrel” implies 
non-uniform sensitivity, while “total body” size (50 cm)
diminishes the truncation effects.

Re-projection was not used as in STIR framework 
[K Thielemans et al., PMB 2012], but sensitivity map 
was generated using hybrid 2D+2D approach: Monte 
Carlo simulation for XY plane and analytical estimation 
for XZ plane, based on the work [A Strzelecki Ph.D.
dissertation PAN, Warsaw 2016].

Reconstructed image (for a voxel v)

f
true

(v) = f(v)/s(v),

s(v) – sensitivity matrix.

Reference images:
FBP 3DRP (STIR) – needs hit remapping 
onto a single layer (R = 43.73 cm, 384 strips)
TOF KDE – no filters, symmetric 3D kernel

Results: spatial resolutionResults: spatial resolution

XY
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3D reconstructions by TOF KDE, TOF FBP and FBP 3DRP (STIR) for the simulated 
source at (1 cm, 0 cm, 0 cm), PMT readouts, ~100,000 events:

Results: spatial resolutionResults: spatial resolution
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3D reconstructions by TOF KDE, TOF FBP and FBP 3DRP (STIR) for the simulated 
source at (20 cm, 0 cm, 18.75 cm), PMT readouts, ~100,000 events:

Results: spatial resolutionResults: spatial resolution
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GATE simulations of 1-mm spherical source (370 kBq) – NEMA standard, PMT 
readout, for the accuracy of 0.5 mm. Voxel size 1.8 mm × 1.8 mm × 2.6 mm

Readout: PMT

Source at:
(y

src
 = 0 cm) Algorithm

FWHM (in mm) along axis

X Y Z

3-layer scanner (“big barrel”): R = 42.5/46.75/57.5 cm, 
48/48/96 strips of the dimension 7 × 19 × 500 mm, 100,000 events per simulation

x
src

 = 1 cm
z

src
 = 0 cm

FBP 3DRP 4.5 7.0 20.0

TOF KDE 5.5 6.0 20.0

TOF FBP 5.0 6.5 20.5

x
src

 = 10 cm
z

src
 = 0 cm

FBP 3DRP 5.0 7.0 20.0

TOF KDE – – –

TOF FBP 5.5 5.0 20.0

x
src

 = 10 cm
Z

src
 = 18.75 cm

FBP 3DRP 5.5 7.5 20.5

TOF KDE – – –

TOF FBP 5.5 5.0 20.0

x
src

 = 20 cm
z

src
 = 18.75 cm

FBP 3DRP 6.5 7.5 21.0

TOF KDE 7.5 6.0 22.0

TOF FBP 7.0 5.5 18.0

Results: spatial resolutionResults: spatial resolution
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3D reconstructions by TOF KDE, TOF FBP and FBP 3DRP (STIR) for the measured 
source (0 cm, 10 cm, -18.5 cm?), PMT readouts, ~150,000 events:

Results: spatial resolutionResults: spatial resolution
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3D reconstructions by TOF KDE, TOF FBP and FBP 3DRP (STIR) for the measured 
source (0 cm, 20 cm, 0 cm), PMT readouts, ~150,000 events:

Results: spatial resolutionResults: spatial resolution
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PSF (FWHM) values for Z axis are
systematically lower if compared with 
the simulated data (early experiment)
TOF FBP is better than FBP 3DRP, but 
in order to use STIR, all hits were 
remapped onto 1-layer (384 strips)

Results: spatial Results: spatial 
resolutionresolution
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IEC NEMA phantom, simulated in GATE (at the centre of 
the scanner, one long measurement (3000 s), filtered by 
true coincidences only (data size 10-20 mln.)
Ideal geometry: 384 strips, R=43.73 cm, SiPM (CRT=235 ps)

Attenuation correction was added to TOF FBP: each LOR 
is treated as a projector, attenuation path is estimated based on 
Siddon algorithm (computing the intersecting length of a ray with each voxel)
[R Li et al., Journ. Comp. Sci. 2010]:
Update intensity for each LOR as

I = I
0
exp(–μx), where μPET(H

2
O) = 0.096 cm–1.

Attenuation map was created comprising all 
phantom volume filled with radioactive liquid,
but without cold spheres and capillaries.

This upgrade extends reconstruction time by 
less than 10% (still possible for real time).

Results: image qualityResults: image quality
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10 mln. true coincidences, results for FBP 3DRP are obtained by P. Kopka (see 
poster). Contrast recovery coefficient (CRC), background variation (BV) and 
signal-to-noise ratio (SNR) were estimated for 13-mm and 22-mm spheres.

Results: image qualityResults: image quality

XYXY

XZXZ

13 mm:  CRC=0.49, BV=0.17, SNR=9.0
22 mm:  CRC=0.82, BV=0.09, SNR=26.6

CRC=0.48, BV=0.16, SNR=9.1
CRC=0.94, BV=0.10, SNR=29.8

CRC=0.32, BV=0.27, SNR=3.5
CRC=0.77, BV=0.18, SNR=13.0
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20 mln. true coincidences, results for OSEM (STIR) are obtained by P. Kopka.
Full-sized TOF kernel was used for all images.

Results: image qualityResults: image quality

XYXY

XZXZ

13 mm:  CRC=0.43, BV=0.09, SNR=15.1
22 mm:  CRC=0.75, BV=0.05, SNR=41.2

CRC=0.47, BV=0.10, SNR=14.5
CRC=0.92, BV=0.06, SNR=44.2

CRC=0.14, BV=0.16, SNR=2.6
CRC=0.43, BV=0.10, SNR=13.1
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– TOF based reconstructions are promising solution for J-PET due to the excellent temporal 
resolution and shorter scan times if compared to non-TOF.

– There is a need for the specific algorithms due to the complex geometries of J-PET (sensitivity 
map is essential), the continuous character of strips (hence TOF), along with the eventual DOI 
information, estimated by WLS. Using bins in projection space is unpractical.

– TOF FBP could be employed using filters defined in image space, applied directly to each LOR as 
three separate kernels in event-by-event way. Scalability of this process opens up a possibility 
for real time imaging (already built and tested for non-filtered reconstructions using FPGA), 
since the intensity should be updated only for the small fraction of voxels.

– Imposing Gaussian kernels along LOR and Z-axis would blur the image thus reducing spatial 
resolution. The process of optimisation may differ from the bandwidth selection for TOF KDE, 
because 3D kernel is not symmetric.

– Single-event based TOF FBP achieve similar or better results for spatial resolution and image 
quality, compared to non-TOF reconstructions from STIR and non-filtered TOF KDE.

Yet to resolve: 
– Explore the ways to optimise the parameters for asymmetric TOF FBP kernel, as well as the 
choice of optimal filter/cut-off frequency (apodisation).
– Compare the results for TOF FBP with other TOF based algorithms (MLEM, TV etc).
– Analyse performance benchmarks

Summary and further plansSummary and further plans
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Thank You for Your attention!Thank You for Your attention!


