

Investigations on physical and biological range uncertainties in Krakow proton beam therapy centre

A. Rucinski¹, J. Baran¹, G. Battistoni^{2,3}, A. Chrostowska⁴, M. Durante^{5,6}, J. Gajewski¹,
 M. Garbacz¹, K. Kisielewicz⁴, N. Krah⁷, V. Patera⁸, M. Pawlik-Niedźwiecka^{1,9}, I. Rinaldi¹⁰,
 B. Rozwadowska-Bogusz⁴, E. Scifoni³, A. Skrzypek¹, F. Tommasino^{3,11}, A. Schiavi⁸, P. Moskal⁹

 ¹Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland ²INFN, Milan, Italy ³TIFPA, Trento, Italy
 ⁴Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Cracow Branch, Krakow, Poland
 ⁵Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ⁶Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany ⁷University Lyon, CNRS, CREATIS UMR
 5220, Centre Léon Bérard, Lyon, France ⁸Sapienza University of Rome, Rome, Italy ⁹Institute of Physics, Jagiellonian University, Krakow, Poland ¹⁰ZonPCT/Maastro clinic, Maastricht, The Netherlands ¹¹University of Trento, Trento, Italy

Outline

<	

J-PET for

assurance

 Proton therapy range monitoring by means of PET-gamma detection

GPU accelerated Monte Carlo code FRED for

• Treatment planning, biological dose

modeling with variable RBE, quality

ResearchTranslation

Interdyscyplinary collaboration

Proton therapy treatment

Fred MC: the power of GPU

Validation vs. FLUKA and measurements @ CNAO (Schiavi et al. PMB 2017)

acc. x1000 wrt. full MC code

- MC for protons in voxel geometry
- condensed history for continuous processes (dE/dx, MCS, energy loss fluctuations),
- single steps for nuclear events: elastic and inelastic; fragmentation; local deposition of heavy ions; tracking of secondary protons and deuterons
- HU to density conversion (Schneider) and stopping power calibration
- dose optimisation using Dose Difference Optimisation (DDO; Lomax)
- RBE = 1.1 for protons and variable RBE calculations...

New developments of FRED

- Proton radiography (Lyon, Maastricht)
- Implementation of scoring in multiple regions with arbitrary orientation
- Application of range shifter, dynamic aperture or detector development for range monitoring in PBT
- Slicer 3D interface
- FRED kernel developments/implementations
 - photon interactions
 - nuclear models for light ions in particle therapy (e.g. carbon, helium, oxygen).

Commissioning - physics

Range

Lateral profiles in air

Lateral profiles in RW3

Submillimetre agreement, with and without range shifter

Commissioning - physics

9 parameters of beam model for each 17 energies $(E + \sigma E + 6 \text{ emittance param.} + MU \text{ scaling factor})$

Beam model based on commissioning measurements or up-to-date QA data

Beam model preparation time ~12h (fully automated)

Range

1.0

Integrated depth dose, IDD [*Gy*] 0 20 8 8 8 8

0.0

Lateral profiles in air

Lateral profiles in water

Submillimetre agreement, with and without range shifter

Validation in water

CT calibration

Validation in head phantom

50 100 150 X [mm] Gamma Index FRED vs MatriXX

TPS

MatriXX

TPS vs MatriXX

Uniform, mono-energetic field, 150 MeV, 10x10 cm

Radiobiological modeling

"I think you should be more explicit here in step two."

Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com

Constant RBE proton therapy routine

$$D_{bio} = D_{phys} \cdot RBE$$

Fig. 1. Experimental proton RBE values (relative to 60 Co) as a function of dose/fraction for cell inactivation measured *in vitro* in the center of a SOBP. Closed symbols show measurements using Chinese Hamster cell lines; open symbols stand for other cell lines. Circles represent RBEs for <100-MeV beams and triangles for >100-MeV beams.

Variable RBE hypothesis in proton therapy

$$D_{bio} = D_{phys} \cdot RBE$$

RBE depends on

- dose/fractionation scheme
- biological endpoint
- LET (depth, particle type)
- Dose rate (FLASH)

LQ model based

$$RBE\left(D_{p}, \frac{\alpha_{p}}{\alpha_{x}}, \frac{\beta_{p}}{\beta_{x}}, \left(\frac{\alpha}{\beta}\right)_{x}\right) = \frac{D_{x}}{D_{p}} = \frac{\sqrt{\left(\frac{\alpha}{\beta}\right)^{2}_{x} + 4\frac{\alpha_{p}}{\alpha_{x}}\left(\frac{\alpha}{\beta}\right)_{x}D_{p} + 4\frac{\beta_{p}}{\beta_{x}}D_{p}^{2} - \left(\frac{\alpha}{\beta}\right)_{x}}{2D_{p}}.$$

Variable RBE for CCB patient

Radiobiological dose TPS RBE=1.1

TPS_{RBE=1.1} vs **FRED**_{RBE=1.1}

Eclipse v.13.6

30

20

Radiobiological dose FRED RBE=1.1

Radiobiological dose FRED variable RBE

TPS_{RBE=1.1} **vs FRED**_{RBE=Carabe}

30

20

Variable RBE for CCB patient

1.1

LET distribution

RBE distribution

FRED MC in CCB

• Research

- Retrospective treatment planning studies of RBE dose in patients (A. Skrzypek & M. Garbacz) Collaboration with clinicians, MPs, and radiobiologists
- Translation
 - Installation of FRED computation unit in CCB
 - Physical dose QA
 - RBE dose

Secondary radiation & range monitoring

Signal is patient & particle type specific

Krimmer et al. Nuclear Inst. and Methods in Physics Research, A 878 (2018) 58-73

Jagiellonian-PET (J-PET)

Cost effective method for the Total-body PET

Principle

CRT = 0.266 ns.

 $t_{hit}=(t^{L}+t^{R})/2$ $\Delta LOR=(t_{hit}^{up}-t_{hit}^{dw})c/2$

Prototype

- Three cylindrical layers of EJ-230 plastic scintillator strips (7×19×500mm3)
- Vacuum tube photomultipliers

Modular Prototype

light weight, portable, reconfigurable

Plastic scintillator

Integrated on-board front-end electronics

Simulation setup

J. Baran & M. Pawlik-Niedźwiecka

Settings:

- GATE/Geant4
- Physics list: QGSP_BIC_HP_EMY
- Full simulation
- in-room design (in-beam in the future)
- PMMA phantom 10x10x40cm³
- Protons at 150 MeV
- 10⁷ primary protons
- Clinical proton beam model used in Krakow for patient treatment

Scoring:

- # of annihilations in the PMMA
- # of detected singles
- # of detected coincidences

Signal / efficiency

- $\mathcal{E}_{total} = \mathcal{E}_{back-to-back} * \mathcal{E}_{det} * \Omega$ $\mathcal{E}_{det} = 0.1, \Omega_{barrel} = 0.44$
- Monte Carlo simulations:
 - What counts for proton therapy is:

 $\varepsilon_{total} = \#$ of coincidences / # of primary protons

...accounting for the annihilation production distribution in the target

Design

- The modular J-PET gives large freedom of choice of geometrical arrangement
- The number of layers should improve the efficiency
- Barrel could be integrated away from the gantry using e.g. rail-system
- Dual head can be integrated in the treatment position (studied in GSI and CNAO)

Signal

CASTOR for the J-PET image reconstruction

- Reconstruction requirements for the J-PET
- long axial FOV (2m)
- multi-layer, non-cylindrical geometry
- inclusion of TOF
- continuous position determination along the axial direction

• The currently ongoing work

- Simulations of the system matrix
- Reconstruction of PET images

Experimental validation

- First experiment of the J-PET in the proton beam is planned in the first week of July
- It aims to investigate the secondary radiation counting rate of the J-PET detector by
 - parallel measurements of secondary radiation with J-PET and Time-Pix (ADVACAM)
 - GATE Monte Carlo simulations of the experimental setup

Proton therapy treatment

A lot of work to do...

- Clinical trials (evidence)
- New treatment protocols (standardisation)
- Robust treatment planing
- Treatment of moving targets
- Range uncertainties/new imaging methods
- HU-RSP conversion/proton radiography & CT
- Understanding radiobiology
- Cost reduction

Thank you

J. Baran, K. Czerska, J. Gajewski, M. Garbacz,

L. Grzanka, R. Kopec, A. Krempa, K. Krzempek,

G. Mierzwińska, N. Mojżeszek, E. Pluta, M. Rydygier

Monitoring: Paweł Olko