

Delivering a one-two punch to cancer

Dr Mitra Safavi-Naeini Australian Nuclear Science and Technology Organisation

June 2019

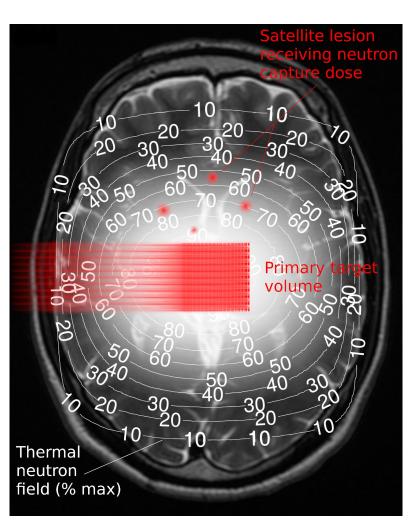
ANSTO | Home of Australia's landmark research infrastructure

Our work

Human health

Support to industry

Protecting the environment


NCEPT: Scientific team

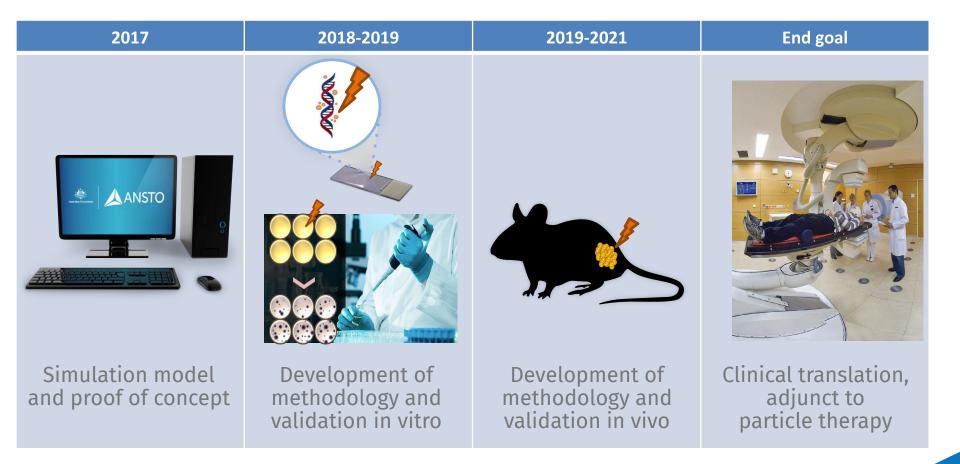
Physics: Mitra Safavi-Naeini Susanna Guatelli Andrew Chacon Keith Bambery Biology : Ryan Middleton Nicholas Howell Chemistry: Benjamin Fraser Naomi Wyatt

NCEPT: A novel adjunct to particle therapy

Neutron Capture Enhanced Particle Therapy – a major ANSTO-led international collaboration

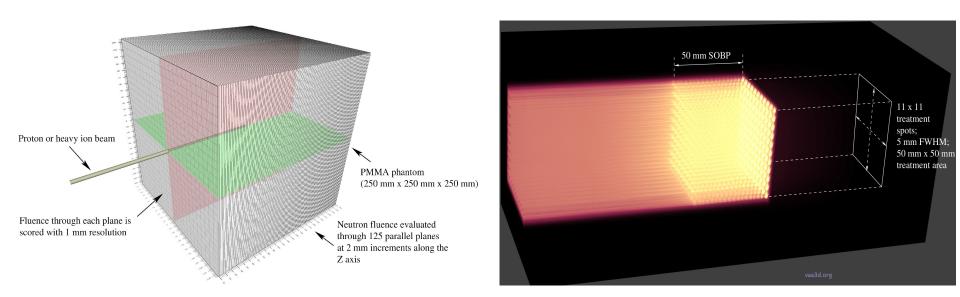
Captures **internally generated slow neutrons**, produced at and around the target volume to:

- Enhance the dose to target
- **Reduce** the dose to **normal tissue**
- Simultaneously target out-of-field satellite lesions


Leverages ¹⁰B and ¹⁵⁷Gd-enriched neutron capture agents used in neutron capture therapy

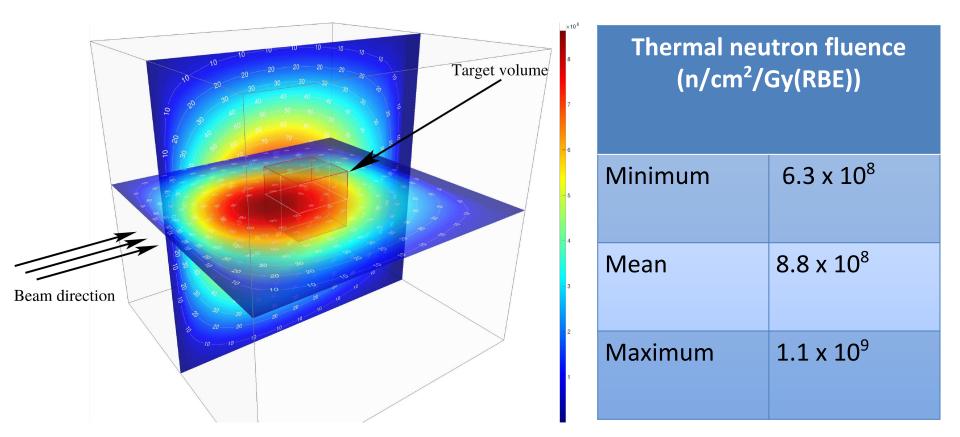
Experimental proof of concept obtained in 2018-2019 in Japan

Safavi-Naeini et al., 2017 "An irradiation system and method" WO2019051557A1 https://patents.google.com/patent/WO2019051557A1/



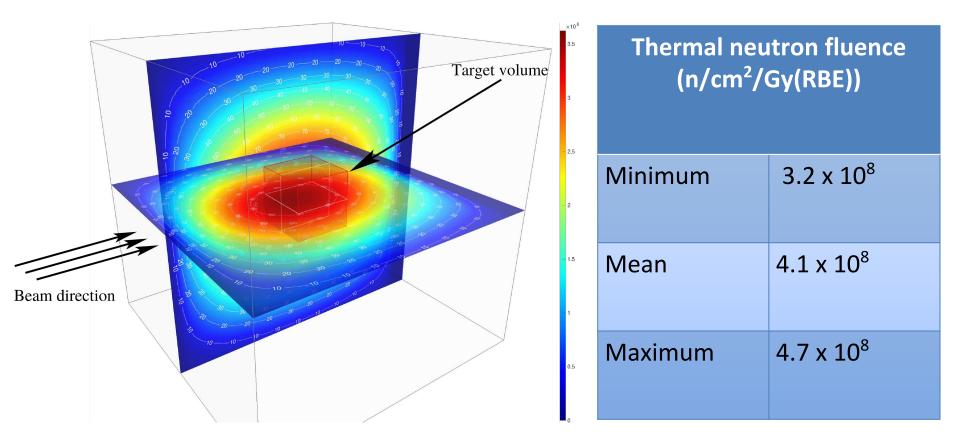
The story so far

Simulation campaign: why and how



- Realistic treatment plan delivered with carbon and proton beams:
 - Quantification of the neutron fluence at predefined target volumes within a phantom
 - Evaluation of ¹⁵⁷Gd and ¹⁰B NCA concentrations required to achieve a 10% increase in BED

Safavi-Naeini *et al.* (2018). "Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons". In: Scientific Reports (Nov. 2018). doi: 10.1038/s41598-018-34643-w.


Thermal neutron fluence: proton SOBP

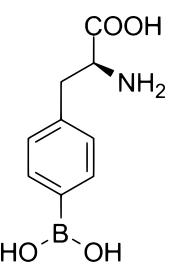
Estimated ¹⁰B-BPA required for 10% dose boost: 132 ppm (liver), 345 ppm (brain) Estimated ¹⁵⁷Gd-TPP-DOTA required for 10% dose boost: > 616 ppm (depending on Gd distribution)

Safavi-Naeini et al. (2018): Scientific Reports (Nov. 2018). doi: 10.1038/s41598-018-34643-w.

Thermal neutron fluence: carbon SOBP

Estimated ¹⁰B-BPA required for 10% dose boost: 285 ppm (liver), 744 ppm (brain) Estimated ¹⁵⁷Gd-TPP-DOTA required for 10% dose boost: > 1330 ppm (depending on Gd distribution)

Safavi-Naeini et al. (2018): Scientific Reports (Nov. 2018). doi: 10.1038/s41598-018-34643-w.

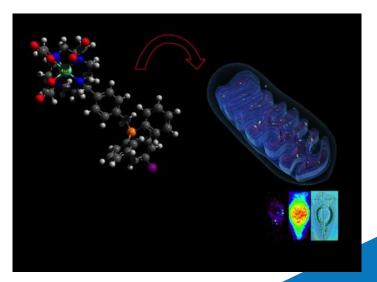

Neutron Capture Agents

¹⁰B-borono-L-phenylalanene

- Thermal neutron cross-section of ¹⁰B is 3838 barns
- Neutron capture results in release of damaging high-LET alpha particles and ⁷Li nucleus:

¹⁰B + n_{th} \rightarrow [¹¹B]* \rightarrow α + ⁷Li + γ (0.48 & 2.31 MeV)

• BPA is preferentially absorbed by cancer cells & is clinically approved for use in neutron capture therapy in Japan and elsewhere



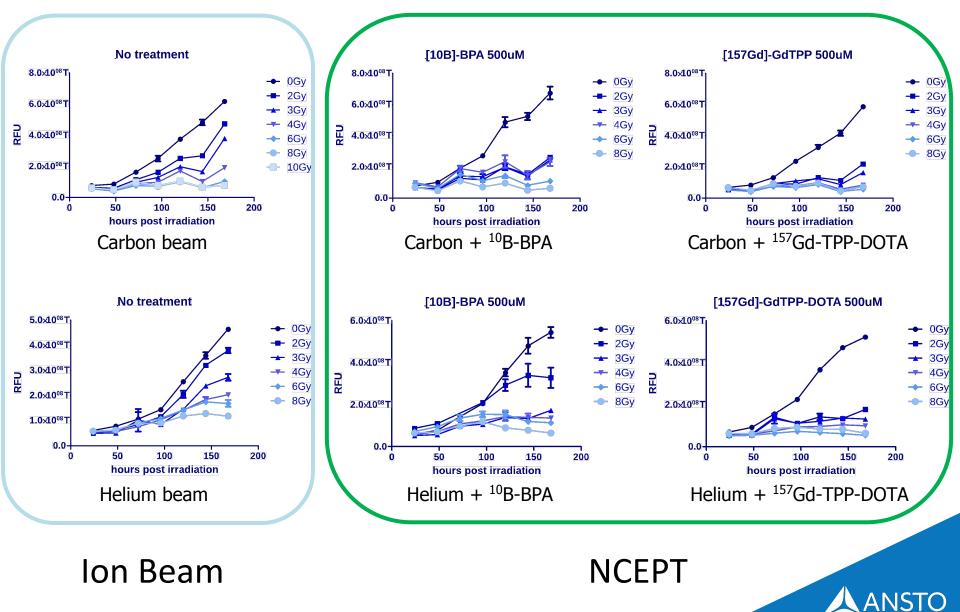
¹⁵⁷Gd-TPP-DOTA

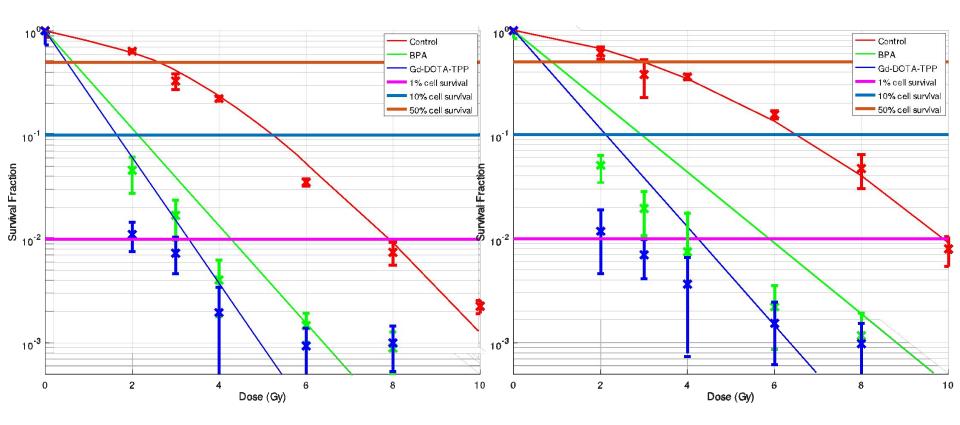
- Thermal neutron cross-section of ¹⁵⁷Gd is ~254000 barns
- Neutron capture results in release of high-LET Auger and internal conversion electrons highly damaging & short-range:

¹⁵⁷Gd + n_{th} → [¹⁵⁸Gd]^{*} → ¹⁵⁸Gd + γ (7.94 MeV)

- TPP-DOTA chelates Gd and targets mitochondria membrane in cancer cells
- Very high specific uptake

Morisson et al. (2014): Chemical Communications (2014, 50, 2252-2254). doi: 10.1039/C3CC46903D

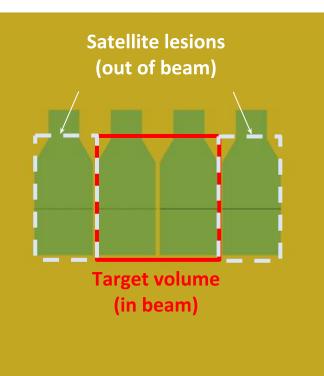

In vitro proof of concept: HIMAC


ANSTO

- Impact of radiation on T98G cell proliferation measured for 6 doses (0 to 10 Gy), with and without two neutron capture drugs (NCAs):
 - ¹⁰B-4-borono-L-Phenylalanine and DOTA

Ion therapy vs NCEPT: Dose response

Ion therapy vs NCEPT: clonogenic assay

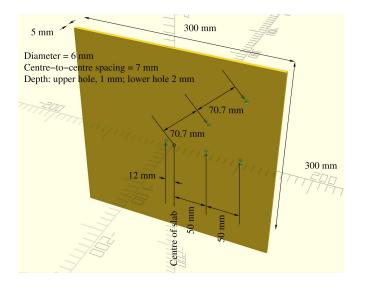

Carbon beam

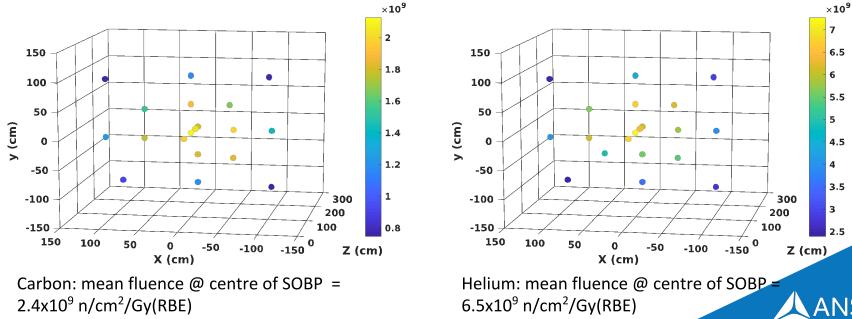
Helium beam

Ion therapy vs NCEPT: IC50

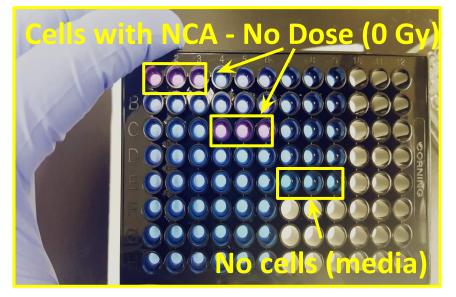
In-beam IC50

	C IC50 (Gy)	He IC50 (Gy)
¹⁰ B-BPA	1.77 ± 0.11	2.41 ± 0.07
¹⁵⁷ Gd-TPP-DOTA	0.89 ± 0.49	1.41 ± 0.13
No compound (ion beam only)	3.09 ± 0.11	3.54 ± 0.41

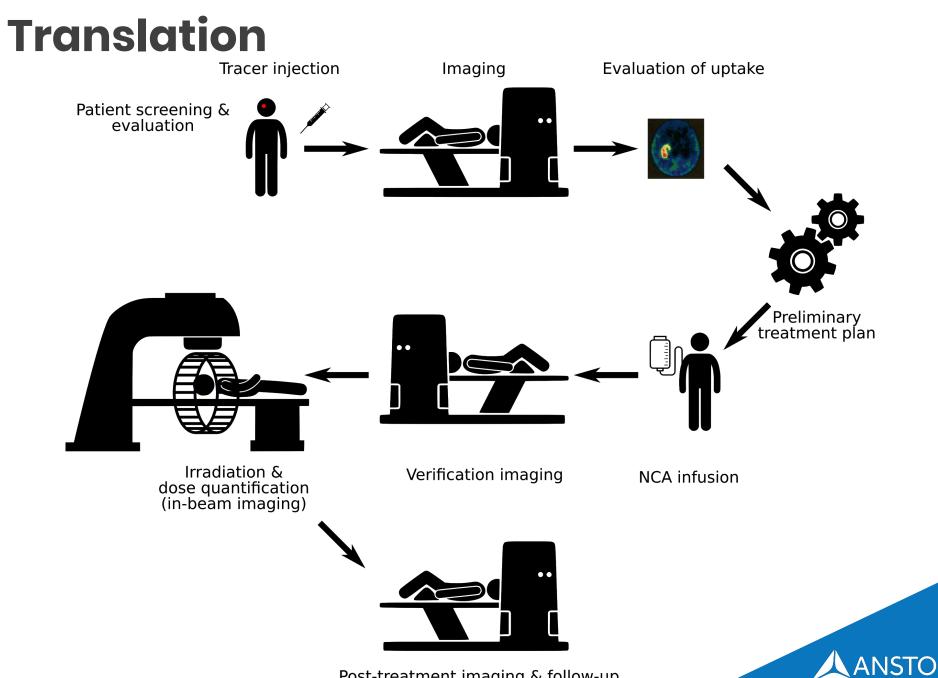

Out-of-beam IC50


	C IC50 (Gy to SL)	He IC50 (Gy to SL)
¹⁰ B-BPA	3.33 ± 0.15	3.78 ± 0.08
¹⁵⁷ Gd-TPP-DOTA	3.11 ± 0.60	2.81 ± 0.10
No Compound (Ion beam only)	7.46 ± 0.44	8.81 ± 0.19

Thermal neutron quantification


- Thermal neutron fluence measured using gold activation method
- Fluence quantified by differential activation of irradiated bare and cadmium-shielded gold foils
- 5 positions evaluated at each of 4 depths, inside and outside of beam

In vitro campaign outcomes


- In vitro results with carbon and helium are extremely compelling:
 - In beam: NCEPT achieves 10% survival with < 50% ion-only dose
 - Out of beam: NCEPT IC50 similar to in-beam ion-only IC50
- Measured neutron fluence 6x > magnitude compared to simulation
- Existing biophysics models (LQM/MMKM) inadequate to explain magnitude of effect

Project plan

- In vivo experiments with C/He (mice) planned for 2020
 - 3 populations (control, BPA and Gd-TPP-DOTA)
 - Tumour growth delay measured in each population in response to dose escalation
- In vitro & in vivo experiments with proton therapy is planned for USA in 2020-2023 (+NIH grant proposal)
- In vivo biodistribution and pharmacokinetics of ¹⁵⁷Gd-based compounds targeting mitochondria are in progress.
- ¹⁰B-BPA is clinically approved for BNCT in some jurisdictions, including Japan: pathway for fast-tracked clinical trials
 - Terminal head & neck secondary melanoma patients (2021)
 - ¹⁰B-BPA is also reported to have high pancreatic uptake another potential target

Post-treatment imaging & follow-up

Missing pieces of the puzzle

- Treatment planning with NCEPT is complex
 - Dose now includes both **ion dose** and neutron capture dose
 - Iterative dose optimisation is required
 - Critical need for absolute quantification of NCA uptake (e.g. using ¹⁸F-BPA PET for ¹⁰B-BPA or MRI for ¹⁵⁷Gd-TPP-DOTA)
- Opportunities for development of new theranostic agents
- Quality assurance: quantitative imaging techniques are required to verify the total deposited dose:
 - Beam on: prompt gamma (Gd) and SPECT (boron)
 - Beam off: PET (direct dose estimation from positron-emitting fragments)
- We are seeking opportunities for collaborating with you on these and other aspects of the project

NCEPT Collaboration

ANSTO

- Mr. Nicholas Howell
- Dr. Ryan Middleton
- Dr. Benjamin Fraser
- Dr. Naomi Wyatt
- Dr. Keith Bambery
- Dr. Justin Davies
- Dr. Ulf Garbe
- Dr. Joseph Bevitt
- Mr. Attila Stopic
- Dr. Timothy Boyle
- Ms Shakila Fernando
- Dr. Mitra Safavi-Naeini

University of Wollongong

- Mr. Andrew Chacon
- Mr. Harley Rutherford
- A/Prof. Anthony Dosseto
- A/Prof. Susanna Guatelli
- Dist. Prof. Anatoly Rosenfeld

University of Sydney

• Prof. Louis Rendina

Westmead Hospital

- Dr Alison Salkeld
- A/Prof. Verity Ahern

Prince of Wales Hospital

• Prof. Michael Jackson

National Institute of Radiological and Quantum Science (NIRS-QST), JP

- Prof. Naruhiro Matsufuji
- Dr Ryoichi Hiryama
- Dr Akram Mohammadi
- Prof. Masashi Koto
- Prof. Shigeru Yamada
- Prof. Hiroshi Tsuji

UF Health Proton Therapy Institute, US

- Dr Zuofeng Li
- Prof. Nancy Mendenhall

Loma Linda University, US

• Prof. Reinhard Schulte

Northern Illinois University, US

• A/Prof. Linda Yasui

