Precision test for T-symmetry violation in Positronium decay using the J-PET detector

Juhi Raj

On Behalf of the J-PET Collaboration
 Jagiellonian University, Krakow, Poland

3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, 23 ${ }^{\text {rd }}$ - 28 $8^{\text {th }}$ June, 2019
1.) Motivation

- Precision test in T-Symmetry Violation in the Leptonic Sector
2.) Methodology
- Experimental Method \& Pre-selection of collected Data
3.) Preliminary Results
- Precision of T-Symmetry Violation

Precision tests in T-Symmetry Violation in the Leptonic Sector:

So far, No CP- violation was observed with a sensitivity
of 2.2×10^{-3}.

Operator	\mathbf{C}	\mathbf{P}	\mathbf{T}	$\mathbf{C P}$	$\mathbf{C P T}$
$\vec{S} \cdot \overrightarrow{k_{1}}$	+	-	+	-	-
$\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)$	+	+	-	+	-
$\left(\vec{S} \cdot \overrightarrow{k_{1}}\right) \cdot\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$	+	-	-	-	+
$\overrightarrow{\epsilon_{1}} \cdot \overrightarrow{k_{2}}$	+	-	-	-	+
$\vec{S} \cdot \overrightarrow{\epsilon_{1}}$	+	+	-	+	-
$\vec{S} \cdot\left(\overrightarrow{k_{2}} \times \overrightarrow{\epsilon_{2}}\right)$	+	-	+	-	-

Operator	\mathbf{C}	\mathbf{P}	\mathbf{T}	$\mathbf{C P}$	$\mathbf{C P T}$
$\overrightarrow{\epsilon_{1}} \cdot \overrightarrow{k_{2}}$	+	-	-	-	+

Table 1. Discrete symmetry odd-operators using spin orientation of the o-Ps as well as polarization and momentum directions of the annihilation photons
P. Moskal et al., Acta Phys. Polon. B 47, 537 (2016)

Talks by
Szymon Niedźwiecki (Thursday 10:05 to 10:25)
Grzegorz Korcyl (Thursday 10:45 to 11:00)

Figure 2: A point like positron source is placed in the center of the detector geometry, covered in XAD-4 porous polymer within the small metallic chamber.

Pre-selection of the signal: o-Ps $\longrightarrow 3 \gamma+\gamma^{\prime}$

Figure 3: Presents the distribution of the interaction positions on the Z-axis of the photon interaction in the detector geometry.
The active scintillating region lies between $-23.0 \mathrm{~cm} \&+23.0 \mathrm{~cm}$ (Z-axis).

Energy Deposition as a function of Time Over Threshold (TOT):

Figure 7a. Decay scheme of Sodium and formation of ortho-Positronium.

Figure 7b. Positron lifetime distribution in the XAD4, obtained from measurement with the J-PET detector.
Measurement was conducted by placing a ${ }^{22} \mathrm{Na}$ source covered in XAD4 polymer in the center of the geometry.
The lifetime spectra was obtained by identifying the prompt photon and the three annihilated photons from the decay of o-Ps

Identification of the Scattered Photon:

$$
\begin{equation*}
\text { Where, } \Delta_{\mathrm{MC}}=\mathbf{t}_{\mathbf{M}}-\mathbf{t}_{\mathrm{C}} \tag{9}
\end{equation*}
$$

Figure 8a: Schematic of the single layer of plastic scintillators in the J-PET detector as the blue ring. A point like positron source (red) is placed in the center, covered in XAD-4 porous polymer (green).
The superimposed arrows indicate the three gamma photons originating from the annihilation of ortho-positronium decay ($\mathrm{k}_{1}, \mathrm{k}_{2}$ and k_{3}), and scattered photon (k_{1})

Figure 8b: To assign the scattered photon to its primary photon we introduce a parameter $\Delta_{\mathrm{ik}}=\left(\mathrm{t}_{\mathrm{M}}-\mathrm{t}_{\mathrm{C}}\right)$, where, t_{M} and t_{C} are the measured and calculated time of flight between the $\mathrm{i}^{\text {th }}$ and $\mathrm{k}^{\text {th }}$ interaction, respectively. Therefore, Δ_{ik} should be equal to zero in case if the $\mathrm{k}^{\text {th }}$ signal is due to the $\mathrm{i}^{\text {th }}$ scattered photon
J. Raj, et al., Hyperfine Interact, 239:56 (2018)

So far, No CP- violation was observed with a sensitivity of 2.2×10^{-3}.
T. Yamazaki et al., Phys. Rev. Lett. 104, 083401 (2010)

- The presented result represents only $\sim 1 \%$ of the data collected so far.
- The detector is going to be upgraded with an added on layer to improve the acceptance.
- Improve the precision test of T-symmetry in the decay of o-Ps by one order of magnitude to the currently published value.

Expectation Value $=3.2 \times 10^{-4}+/-2.2 \times 10^{-3}$

Note: No T-Symmetry Violation is observed with a precision of $\sim 10^{-3}$

Thank you!

