Overview of the J-PET analysis and simulation software

Wojciech Krzemień

3rd Jagiellonium Symposium on Fundamental and Applied Subatomic Physics Kraków, 27.06. 2019

J-PET software

Image reconstruction

Monte Carlo simulations

Detector calibrations

Data analysis

Data Acquistion System

Image reconstruction Data analysis

Monte Carlo simulations

Detector calibrations

Data Acquistion System

J-PET collaboration J-PE	Γ Softw	vare@	GitHub	
your organization's avatar	thub.com	/JPET-	romography	
Repositories 21 Packages People 23 Team	ns 🔳 Projects	🌣 Settings	21 repositories]
Find a repository	Type: All - La	anguage: All ▼	Customize pins	
J-PET-geant4 Forked from daria137/jpetmc MC simulations for J-PET using the modified Geant4 package C++ I Apache-2.0	۸	 Top languages ● C++ ● Python ● Haskell ● ● Mathematica 		
-pet-framework-examples Example analyses based on the J-PET Analysis Framework C++ ∯ Apache-2.0	Am	People		
RectangularScintillator .ibrary for Monte Carlo simulation of photons movement in scintillator of ectangular shape (C++11) C++ Ŷ1 ★ 0 ① 0 ① 0 Updated 3 days ago				
Gate		0 seats	left — Buy more	

۸.

٨

- Data analysis framework,
- MC simulations,
- Image reconstruction algo,
- MC/data postprocessing

C++

- Data analysis framework,
- MC simulations,
- Image reconstruction algo,
- MC/data postprocessing

C++

- Data analysis framework,
- MC simulations,
- Image reconstruction algo,
- MC/data postprocessing

Python

- Image reconstruction prototyping,
- validation studies,
- simple MC simulations

- Data analysis framework,
- MC simulations,
- Image reconstruction algo,
- MC/data postprocessing

Python

- Image reconstruction prototyping,
- validation studies,
- simple MC simulations

ba&sh

+ many more

Image reconstruction - challenges

Conventional tomography

Adapt known algorithms to take advantage of (or at least not deteriorate) the J-PET scanner features:

- timing resolution
- modular, multiple-layer setup
- large Field-of-View
- Fast and Efficient Data Acquisition system

Image reconstruction - challenges

Conventional tomography

Adapt known algorithms to take advantage of (or at least not deteriorate) the J-PET scanner features:

- timing resolution
- modular, multiple-layer setup
- large Field-of-View
- Fast and Efficient Data Acquisition system

Develop new methodologies and techniques

- Three-photon tomography,
- 2+1 tomography
- Positronium lifetime tomography
- Quantum entanglement imagining

Image reconstruction algorithms & packages

Packages being used/ under test:

- Software for Tomographic Image Reconstruction (STIR) (used in [2], [3])
- Tomographic Reconstruction in Python (TomoPy) (used in [3])
- Customizable and Advanced Software for Tomographic Reconstruction (CASTOR)
- Quantitative Emission Tomography Iterative Reconstruction (**QETIR**)(*)

 G. Korcyl et al. IEEE Transactions On Medical Imaging, Vol. 37, No. 11 (2018) 2526
 P. Kowalski et al. Physics in Medicine and Biology 63 (2018) 165008
 R. Y. Shopa et al. Acta Phys. Polon. B48 no. 10, 1757 (2017)
 L. Raczyński et al. Acta Physica Polonica B Vol. 48, pp. 1611, (2017)
 M. Pawlik-Niedźwiecka et al. Acta Phys. Polon. A 132, no. 5, 1645 (2017)
 A. Strzelecki PhD thesis, Jagiellonian University (2016) https://github.com/JPETTomography/j-pet-mlem

(*)by courtesy of prof. Vandenberghe

Image reconstruction algorithms & packages

• Real time image reconstruction based on Field Programmable Gate Array (FPGA)[1] - see

G. Korcyl's talk

- (Time-of-Flight) Filtered Backprojection (TOF-FBP/FBP)[3][4] see R. Y. Shopa's talk
- Maximum Likelihood Expectation Maximization (MLEM) [5][6] see P. Kopka & K.

Klimaszewski poster

• TOF Back Projection Total Variation Regularization (TOF-BPTV)[4] – see L. Raczyński talk

- 1) G. Korcyl et al. IEEE Transactions On Medical Imaging, Vol. 37, No. 11 (2018) 2526
- 2)P. Kowalski et al. Physics in Medicine and Biology 63 (2018) 165008
- 3) R. Y. Shopa et al. Acta Phys. Polon. B48 no. 10, 1757 (2017)
- 4) L. Raczyński et al. Acta Physica Polonica B Vol. 48, pp. 1611, (2017)
- 5) M. Pawlik–Niedźwiecka et al. Acta Phys. Polon. A 132, no. 5, 1645 (2017)
- 6) A. Strzelecki PhD thesis, Jagiellonian University (2016) https://github.com/JPETTomography/j-pet-mlem

Monte Carlo simulations

- Experimental sensitivity studies
- Calibration procedure development
- Selection criteria during data analysis
- Testing of image reconstruction algorithms
- Studies of optimal detector setups

1) P. Moskal et al., Phys. Med. Biol. 64 (2019) 055017 2)P. Moskal et al. Eur. Phys. J. C 78 (2018) 970 3)P. Kowalski et al., Phys. Med. Biol.(2018) 63, N.16 4)D. Kaminska et al., Eur. Phys. J. C (2016) 76:445 5)A. Gajos, et. al. Nucl. Instrum. Meth. A819, 54 (2016)

Monte Carlo simulations

https://github.com/JPETTomography/J-PET-geant4

GATE

Simulations of Preclinical and Clinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy

https://github.com/JPETTomography/Gate

J-PET Geant 4

Daria Kisielewska Sushil Sharma

- code available at GitHub https://github.com/JPETTomography/ J-PET-geant4.git
- required packages: geant.10.4, root6, cadmesh, cmake
- physics list: G4EmLivermorePolarizedPhysics (Livermore physics models with polarized photon models)
- the Monte Carlo simulations account for:
 - angular and energy distributions of gamma quanta originating from direct or ortho-positronium annihilation,
 - Compton interactions of emitted gamma quanta in the detector built from plastic scintillators,
 - determination of gamma quanta hit-position and hit-time in the detector with experimentally determined resolutions,
 - multiple scattering and accidental coincidences,

Layer number	Layer radius with respect to the center of scintillator	Number of scintillators in the layer	
1	42.50 cm	48	
2	46.75 cm	48	
3	57.50 cm	96	

Taken from Daria Kisielewska's talk "J-PET Monte Carlo simulations with the GEANT package."

J-PET Geant 4 integration with J-PET Framework

Daria Kisielewska

Taken from Daria Kisielewska's talk "J-PET Monte Carlo simulations with the GEANT package."

Implementation of ortho-positronium decays

Implementation of QED-complient description of orto-positronium decay

Positronium tomography

Fundamental physics studies (symmetries)

Quantum entanglement tomography

1) P. Moskal et al., Phys. Med. Biol. 64 (2019) 055017 2)P. Moskal et al. Eur. Phys. J. C 78 (2018) 970 3)D. Kaminska et al., Eur. Phys. J. C (2016) 76:445

Towards modular PET

J-PET GATE

https://github.com/JPETTomography/Gate

Mateusz Bała, Jakub Baran Nikodem Krawczyk Paweł Kowalski Meysam Dadgar

- Experimental sensitivity studies
- Testing of image reconstruction algorithms
- Studies of optimal detector setups
- Polarization studies
- PET for hadron therapy

Performance studies of the J-PET scanner according to the NEMA norms

IOP Publishing

Phys. Med. Biol. 63 (2018) 165008 (17pp)

https://doi.org/10.1088/1361-6560/aad29b

Physics in Medicine & Biology

OPEN ACCESS PAPER Estimating the NEMA characteristics of the J-PET tomograph using CrossMark the GATE package RECEIVED 13 April 2018 REVISED P Kowalski, W Wiślicki, RY Shopa, L Raczyński, K Klimaszewski, C Curcenau, E Czerwiński, K Dulski, 25 June 2018 A Gajos², M Gorgol⁴, N Gupta-Sharma², B Hiesmayr⁵, B Jasińska⁴, Ł Kapłon², D Kisielewska-Kamińska², ACCEPTED FOR PUBLICATION G Korcyl², T Kozik², W Krzemień⁶, E Kubicz², M Mohammed^{3,7}, S Niedźwiecki², M Pałka², M Pawlik-11 July 2018 Niedźwiecka², J Raj², K Rakoczy², Z Rudy², S Sharma², S Shivani², M Silarski², M Skurzok², B Zgardzińska⁴, PUBLISHED M Zieliński² and P Moskal 10 August 2018 ¹ Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland ² Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland Original content from this work may be used ³ INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy under the terms of the Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland Faculty of Physics, University of Vienna, 1090 Vienna, Austria Attribution 3.0 licence. High Energy Physics Division, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland Any further distribution Department of Physics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq of this work must maintain attribution E-mail: pawel.kowalski@ncbj.gov.pl to the author(s) and the title of the work, journal Keywords: NEMA norms, J-PET, positron emission tomography, plastic scintillators citation and DOI.

Also - see S. Niedzwiecki's talk

Extension to new sources and decays

- Ortho-positronium
- Parapositronium
- Non-pure emitters (e.g. scandium sources)
- Polarization degrees of freedom

Extension of Actor concept

- Local Actor (LA): a standard actor attached to a volume
- Global Actor (GA) can collect data from many volumes
- GA with LA attached, can collect chronologically data from any number of volumes to single ROOT file
- Use GA and LA always when you want to collect the same types of information from many volumes.

J-PET software

J-PET Analysis Framework

Open-source platform for J-PET data analysis

Technicalities

- Open source project
- So far 7 releases (v8 very soon :-))
- Mainly developed in C++11
- ROOT-based data structure (ROOTv6)
- All configuration parameters stored in JSON files.
- Heavy usage of BOOST library,
- Quality ensured by automatic set of tests (Jenkins & Travis)

Data Analysis Fran

Scheme of the analysis with J-Pet framework

Each analysis module is a separate C++ class.

JPetSigCh - Signal Channels registered on Thresholds (1-4)

Analysis and MC simulations in action

D. Kaminska et al., Eur. Phys. J. C (2016) 76:445

From Juhi Raj's talk

D. Kaminska et al., Eur. Phys. J. C (2016) 76:445

From Juhi Raj's talk

Continous integration and testing

flexible project management

961	Rozszerzenie	New	Low	Check the acceptance map output from MLEM package	Kamil Rakoczy	2018-07-02
960	Blad	Answer	Normal	Update includes for current Framework version in Event Display	Kamil Rakoczy	2018-06-27
959	Rozszerzenie	New	Normal	Improve LargeBarrel example	Aleksander Gajos	2018-06-20
953	Blad	In progress	Normal	Problem with Unpacker	Aleksander Gajos	2018-05-17
947	Wsparcie	In progress	Normal	Verify that the incomplete setups (missing TRef-s) are harmless for Examples' UT-s	Krzysztof Kacprzak	2018-04-30
945	Rozszerzenie	New	Low	MC implementation of small annihilation chamber		2018-04-26
944	Rozszerzenie	New	Low	MC implementation of collimator		2018-04-26
943	Rozszerzenie	Answer	Normal	MC Implementation of missing DecayVertex structures	Wojciech Krzemien	2018-04-26
942	Rozszerzenie	In progress	Normal	MC time optimization -> Energy cuts	Sushil Sharma	2018-04-26

Recommended way to report a bug

Authors

J-PET Analysis Framework is being developed by Wojciech Krzemien, Aleksander Gajos, Kamil Rakoczy, Szymon Niedźwiecki and Krzysztof Kacprzak. The former developers are Karol Stola, Damian Trybek, Andrzej Gruntowski, Klara Muzalewska, Oleksandr Rundel and Tomasz Kisielewski.

Citation

In case you want to refer to J-PET Analysis Framework you can use this reference:

W. Krzemien et al.
Analysis framework for the J-PET scanner
Acta Phys. Polon. A127 (2015) 1491-1494 DOI: 10.12693/APhysPolA.127.1491
e-Print: arXiv:1503.00465

All the data analyses, calibration procedures performed in J-PET use J-PET Framework

J-PET software workshops & tutorials

- Gate Output J-PET Analyzer(GOJA) Worshop, 23.24 05. 2019
- STIR FBP 3D Workshop, NCBJ, Warszawa, 22.03.2018
- GATE and Reconstruction Workshop, NCBJ, Warszawa, 22.03.2018
- Second J-PET Framework Workshop, UJ, Kraków, 20-21.03.2017
- J-PET Software Workshop, UJ, Kraków, 07-08. 07.2016
- First J-PET Framework Workshop, NCBJ, Warszawa, 09.04.2015

Jan Bielecki & W.K

Discrimination of the scattering and random coincidences background

IEC-NEMA phantom

18 *10⁷ coincidences:

29% TRUE, 19% PH-SCAT, 2% DET_SCAT - 50%, RNDM

XGBoost & AdaBoost

Jan Bielecki & W.K

First application of Machine Learning techniques in J-PET

Thank you for attention

New contributors are welcome!!! Framework developers meetings ~2 weeks:

http://koza.if.uj.edu.pl/petwiki/index.php/Framework_developers_meetings

J-PET Framework at GitHub

Framework core (library): https://github.com/JPETTomography/j-pet-framework

Usage examples: https://github.com/JPETTomography/j-pet-framework-examples

Image reconstruction – current status

Home-made implementations:

- MLEM (A. Strzelecki)
- 2-D FBP (K. Rakoczy)
- "Naive" online reconstruction (G. Korcyl)

 BPF + regularization methods (L. Raczyński) Software for Tomographic Image Reconstruction

FBP (P. Kopka, K. Klimaszewski)

FBP +KDE (R. Shopa)

Data analysis is hard

dealing with the complexity

Physicist vs Programmer

It compiles and runs, so the program must be correct

Physicist vs Programmer

The best solution is to put my 10000 lines of code in one function

Nowy PMB Daria → symulacje

Calibrations

Way to "fix" imperfection of the real world :-)

Calibrations

- See the dedicated session 5
- All calibrations implemented
- as Tasks in the J-PET Framework

Way to "fix" imperfection of the real world :-)

*Stolen from very old presentations of M. Skurzok and M. Silarski