Searches for discrete symmetry violation signals in decays of positronium atoms at J-PET

$3^{\text {rd }}$ Jagiellonian Symposium
on Fundamental and Applied Subatomic Physics

Aleksander Gajos
on behalf of the J-PET Collaboration Jagiellonian University

Testing discrete symmetries with ortho-positronium: motivation

- Discrete symmetries are scarcely tested in the leptonic sector
- To date, positronium is the only system consisting of charged leptons used for tests of CP and CPT
- Current results saw no violation effects at the precision level of 10^{-3}
- Experimental sensitivity limit:
- false asymmetries from $\gamma \gamma$ interactions in the final state
- only expected at the 10-9 level
=> several orders of magnitude of tests' precision yet to explore
- To date, Ps is the only alternative to neutrinos in the leptonic sector
- Can be used in smaller-scale experiments like J-PET constructed and operating at the Jagiellonian University

The Jagiellonian PET (J-PET) Detector

- Constructed at the Jagiellonian University
- Fist PET device using strips of plastic scintillators
- Photons recorded through Compton scattering
- At the same time: a robust photon detector for fundamental research!

Testing discrete symmetries with ortho-positronium

$$
e^{+} e^{-} \rightarrow \mathrm{o}-\mathrm{Ps} \rightarrow 3 \gamma
$$

$$
\left|\vec{k}_{1}\right|>\left|\vec{k}_{2}\right|>\left|\vec{k}_{3}\right|
$$

$\langle\hat{O}\rangle \stackrel{?}{=} 0 \quad$ for an odd operator

$$
\Leftrightarrow \mathcal{C P T}(\hat{O})=-1
$$

$$
\Leftrightarrow \mathcal{T}(\hat{O})=-1
$$

This talk presents the study of the following T and CPT-odd operator:

$$
\hat{S} \cdot\left(\vec{k}_{1} \times \overrightarrow{k_{2}}\right) /\left|\vec{k}_{1} \times \overrightarrow{k_{2}}\right|=\cos (\theta)
$$

θ - angle between o-Ps spin and decay plane normal

Front view of the J-PET detector

Testing discrete symmetries with ortho-positronium

If polarization direction of the photons (ϵ) can be estimated, a new class of operators becomes available for measurement!

For details of the study of this operator at J-PET see the talk of J . Raj in the same session

operator	C	P	T	CP	CPT
$\vec{S} \cdot \overrightarrow{k_{1}}$	+	-	+	-	-
$\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)$	+	+	-	+	-
$\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$	+	-	-	-	+
$\xrightarrow{ } \vec{k}_{2} \cdot \vec{\epsilon}_{1}$	+	-	-	-	+
$\vec{S} \cdot \vec{\epsilon}_{1}$	+	+	-	+	-
$\vec{S} \cdot\left(\vec{k}_{2} \times \vec{\epsilon}_{1}\right)$	+	-	+	-	-

[P. Moskal et al., Acta Phys. Polon. B47 (2016) 509]

Symmetry-sensitive operators involving o-Ps spin

Goal: measurement of expectation values of angular corelation operators odd under a given discrete symmetry transformation

operator	C	P	T	CP	CPT
$\vec{S} \cdot \overrightarrow{k_{1}}$	+	-	+	-	-
$\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)$	+	+	-	+	-
$\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$	+	-	-	-	+

Using external magnetic field to polarize the o-Ps along a pre-defined axis \rightarrow The only case when $\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$ can be studied

Limiting the momentum direction of positrons forming o-Ps to some solid angle

$$
P=\frac{v}{c}(1+\cos \alpha) / 2
$$

For a cone of opening angle α
Event-by-event spin estimation at J-PET

Ortho-positronium spin determination \rightarrow is required

[A. Gajos et al., NIM A 819 (2016), 54-59]

J-PET vs previous experiments

CPT test @ Gammasphere

$$
\begin{array}{ll}
\text { PT test @ Gammasphere } \\
\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right) & \beta^{+} \text {emitter activity } 1 \mathrm{MBq} \\
\mathbf{C}_{\mathrm{CPT}}=\mathbf{0 . 0 0 2 6} \pm \mathbf{0 . 0 0 3 1} & P_{e+}=\frac{v}{c} \cdot 0.5 \\
\hline 1
\end{array}
$$

[P.A. Vetter et al., Phys. Rev. Lett. 91 (2003) 263401]

CP test using $\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$

- Polarizing o-Ps using magnetic field
- Inclusive measurement

$$
-0.0023<\mathrm{C}_{\mathrm{CP}}<0.0049 .
$$

[T. Yamazaki et al., Phys. Rev. Lett. 104 (2010) 083401]

CPT and CP tests at J-PET

- Estimating e+ spin event-by-event
- Recording multiple geometrical configurations at the same time

Producing and recording o-Ps $\rightarrow 3 \gamma$ in J-PET with extensive-size vacuum chamber

- Extensive-size vacuum chamber, $\mathrm{R} \approx 12 \mathrm{~cm}$

Tomographic images of the chamber obtained using $\gamma \gamma$ annihilations (courtesy of M. Mohammed)

- Walls coated with XAD-4 porous material enhancing o-Ps formation
- β^{+}emitter placed in the centre of the chamber
- 2 different ${ }^{22} \mathrm{Na}$ source activities used
- $10 \mathrm{Mbq}-180$ days of measurement
- 0.8 Mbq - 14 days of measurement

Using Time Over Threshold to identify prompt and annihilation photons

TOT provides a measure of energy deposited in Compton scattering

PMT B	PMT A
TOT(B)	TOT(A)

Photon identification:

o-Ps $\rightarrow 3 \gamma$ annihilation ($\mathrm{E}<511 \mathrm{keV}$) photon candidates
${ }^{22} \mathrm{Ne}^{*}$ de-excitation ($\mathrm{E}=1.27 \mathrm{MeV}$) photon candidates

o-Ps $\rightarrow 3 \gamma$ in J-PET

Considering events where:

- 3 annihilation photon candidates were identified within 2.5 ns
- in coincidence with a single deexcitation candidate in a 250 ns time window

Time between 3γ annihilation and deexcitation of $\beta+$ emitter

Rejection of subsequent scatterings in the detector

- See the talk by J. Raj for the case when we do not want to reject such scatterings
- For each pair of annihilation photon candidates i and $j(i, j=1,2,3)$ the following figure is computed:

$$
\begin{aligned}
& \delta t_{i j}=\left|d_{i j}-c \Delta t_{i j}\right| \\
& \text { where } d_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|
\end{aligned}
$$

3γ image of the o-Ps production chamber

Side view of the detector
Transverse view of the detector excluding the source region ($|Z|>2 \mathrm{~cm}$)

24 cm
$1^{\text {st }}$ "image" of an extensive-size object obtained using annihilations into three photons

CPT-violation sensitive operator

- Uncertainty: 9×10^{-4} (statistical only)
- Using 9% of the already available dataset (~ 300 TB total)
- Not yet corrected for detector acceptance

Summary and perspectives

- Positronium is the only system composed of charged leptons used to test discrete symmetries to date
- Available results indicate no CP nor CPT violation at the sensitivity level of 10-3
- The J-PET detector is capable of an exclusive registration of o-Ps $\rightarrow 3 \gamma$ annihilations
- Including determination of spatial location of the annihilation point
- Thus allowing for e+ and o-Ps spin estimation on an event-by-event basis
- J-PET aims at improving the sensitivity limits to in tests of discrete symmetries by at least an order of magnitude
- With prospects for further improvement

Thank you for your attention!

This work is supported in the framework of the TEAM/2017-4/39 programme of the Foundation for Polish Science

Republic of Poland

Foundation for Polish Science

European Union
European Regional
Development Fund
\square

Backup Slides

O-Ps creation and decay

[1] P. Kubica and A. T. Stewart, Phys. Rev. Lett. 34 (1975) 852 [2] M. Harpen Med.Phys. 31 (2004) 57-61
[3] J Cal-Gonzalez et al, Phys. Med. Biol. 58 (2013) 5127-5152
oPs creation time

Distinguishing o-Ps $\rightarrow 3 \gamma$ and $e^{+} e^{-}$

 $\rightarrow 2 \gamma$

Figure 9. (Left) Simulated distributions of differences between detectors ID ($\Delta \mathrm{ID}$) and differences of hittimes (Δt) for events with three hits registered from the annihilation $\mathrm{e}+\mathrm{e}-\rightarrow 2 \gamma$ (gold colours) and o-Ps $\rightarrow 3 \gamma$ (green colours). (Middle) Disribution of relative angles between reconstructed directions of gamma quanta. The numbering of quanta was assinged such that $\theta_{12}<\theta_{23}<\theta_{31}$. Shown distributions were obtained requiring three hits each with energy deposition larger than E th $=50 \mathrm{keV}$. Gold colour scale shows results for simulations of $\mathrm{e}+\mathrm{e}-\rightarrow 2 \gamma$ and green scale corresponds to $\mathrm{o}-\mathrm{Ps} \rightarrow 3 \gamma$. Typical topology of o-Ps $\rightarrow 3 \gamma$ and two kinds of background events is indicated. (Right) Detection efficiency of the J-PET detector for registration of one, two and three gamma quanta from o-Ps $\rightarrow 3 \gamma$ decay. The efficiency is shown as a function of threshold energy applied in the analysis to each gamma quantum.

> [J-PET: P.Kowalski, P.Moskal, in preparation]

Ortho-positronium decay tomography

Motivation:

- Ortho-positronium (o-Ps) lifetime in tissue strongly depends on inter-cellular spaces' size
- Morphological imaging possible through determination of o-Ps lifetime
- 4-th photon coming from $\beta+$ emitter

[P.M. et al., Patent Application:
PCT/EP2014/068374; WO2015028604] deexcitation is used to estimate o-Ps creation time
- o-Ps $\rightarrow 3 \gamma$ decay location and time must be reconstructed using 3 recorded photons

Properties of the process:

- Momenta of the 3 photons from o-Ps decay lie in one plane (in the o-Ps ref. frame)
- 4-th (deexcitaion) photon momentum is not correlated with the other three
- o-Ps $\rightarrow 3 \gamma$ decay and deexcitation photon emission differ by distance and time related to free e^{+}path and positronium life

Reconstruction of o-Ps $\rightarrow 3 \gamma$ decays in J-PET

1. Find the decay plane containing the 3 hits in the J-PET barrel

2. Transform the hit coordinates to a 2D coordinate system in the decay plane

$$
\left(X_{i}, Y_{i}, Z_{i}, T_{i}\right) \rightarrow\left(X_{i}^{\prime}, Y_{i}^{\prime}, 0, T_{i}\right)
$$

3. For each of the recorded γ hits, define a circle of possible origin points of the incident γ assuming o-Ps decay at time t
4. The decay point $\left(x^{\prime}, y^{\prime}\right)$ in the decay plane and time t is an intersection of 3 such circles:

$$
\left(T_{i}-t\right)^{2} c^{2}=\left(X_{i}^{\prime}-x^{\prime}\right)^{2}+\left(Y_{i}^{\prime}-y^{\prime}\right)^{2}, \quad i=1,2,3
$$

Effects included in the simulation

Non-coplanarity of photons' momenta

Positron thermalization and oPs flight before decay
result in a difference between the o-Ps decay point and the deexcitation photon emission point

o-Ps decay point distribution for a point β^{+}source placed at $(0,0)$ (courtesy of D. Kamińska)

Both effects are negligible within reconstruction resolution (presented on next slides).

Resolution dependence on γ hit time resolution

The resolution of o-Ps decay obtained with the presented reconstruction method depends predominantly on the timing resolution of γ hits in scintillator strips.
spatial
O-Ps decay resolution

Ortho-positronium life time resolution

For each event of o-Ps decay, the positronium decay time can be estimated as:

$$
\tau_{o-P s}^{r e c}=t_{0}-\left(t_{\gamma \text { deexc. }}-\frac{L_{\gamma d e e x c .}}{c}\right)
$$

where t_{0} is the o-Ps decay time reconstucted with the presented method and $L_{\gamma d e e x}$. is calculated using reconstructed o-Ps decay point.

Data analysis flow for o-Ps $\rightarrow 3 \gamma$ identification

- Assembling of PMT signals and photon hits in the scintillator strips using the standard J-PET procedures
- Identification of candidates for:
- annihilation photons
- prompt photons
based on the Time-Over-Threshold (TOT) values
- Requirement of 3 annihilation photon candidates in a 2.5 ns event
\square
- Rejection of multiple subsequent γ scatterings in the detector
\square
- Study of the angular topology of the events
\square
- Trilateration-based reconstruction of o-Ps $\rightarrow 3 \gamma$ decay point and time

Time Over Threshold (TOT) distributions

TOT for all recorded γ hits

 with at least 3 hits within 20 ns

Angular topology of three-photon events

For details on the 2γ event properties, see the talk by M. Mohammed, Session 8, Wed 15:50

Reconstructed o-Ps $\rightarrow 3 \gamma$ decay points

Results obtained with the trilaterative decay point reconstruction Using about 3 \% of the collected Run 6 data

O-Ps litetıme spectra and accidental conicidences

Scheme with a propmt photon followed by an o-Ps $\rightarrow 3 \mathrm{~g}$ annihilations

Soure activity 10 MBq

Soure activity 0.8 MBq

