Measurement of the double polarization observable E for the photoproduction of $\pi^0 \pi^{+/-}$ pairs off deuteron and dButanol targets

Debdeep Ghosal

University of Basel– Krusche Group (4th Jagiellonian Symposium, Collegium Maius, Krakow, '22)

debdcep.ghosal@unibas.ch

July 12th, 2022

Debdeep Ghosal (University of Basel)

Jagiellonian Symposium 2022

July 12th, 2022 1 / 36

... in loving memory of Prof. Bernd Krusche

H 14

- Introduction to Baryon Spectroscopy
- \bullet Motivation for Photoproduction with pion pairs $\to \pi^0\pi^\pm$
- Experimental Setup
- Beam-times and Interested Channels
- Analysis
- Results
- Summary and Outlook
- References

Introduction Baryon Spectroscopy

Debdeep Ghosal (University of Basel)

Introduction Baryon Spectroscopy

- \bullet Basic properties of the fundamental forces \rightarrow the excitation spectrum of composite objects
- $\checkmark\,$ Excitation spectrum of hadrons \rightarrow prop. of the strong interaction
- \checkmark Helps in understanding the underlying symmetries and the internal degrees of freedom

Introduction Baryon Spectroscopy

- \bullet Basic properties of the fundamental forces \rightarrow the excitation spectrum of composite objects
- $\checkmark\,$ Excitation spectrum of hadrons \rightarrow prop. of the strong interaction
- \checkmark Helps in understanding the underlying symmetries and the internal degrees of freedom

Scope:

- insight into low energy **QCD**(large α)
- in medium resonances of nucleons
- Baryons could have less internal degrees of freedom than predicted in quark models
- possibilities of more complex baryonic structures(e.g pentaquarks etc.)

Motivation for Photoproduction to study baryon spectrum

•An efficient tool for the study of decays of nucleon resonances photon induced reactions > pion scattering [in the last decades] Many more states have been predicted than observed. *larger mass region of the spectrum* = missing resonances

> Quark model vs. experimental data 3000 **N*** 2500 Mass [MeV] 2000 1520 1500 1000 3/2+ 5/2+7/2+1/2-3/2-Jπ 1/2 +5/2-7/2- \mathbf{P}_{13} F15 F_{17} S., D13 D15 G₁₇ L_{2T2J} \mathbf{P}_{11}

U. Loering, B.C. Metsch, H.R. Petry, EPJA 10 (2001) 395-446

Motivation for Photoproduction with pion pair production

- pair production of pseudoscalar mesons \rightarrow higher lying resonances have tendency of cascade-like decays with an intermediate state \rightarrow double pion production interesting.
- single meson production reactions restrict and strongly bias against contributions from such states
- study of pion pairs \rightarrow resonance decays involving heavier mesons (f_0, ρ etc.)

Motivation for Photoproduction with $\pi^0\pi^{\pm}$ [1,3]

Motivation for Photoproduction with $\pi^0\pi^{\pm}$ [1,3]

- imp. for in-medium modifications (broadnening, mass shift effects)
- gives also access to resonance decays involving heavier meson like $\rho;$ isospin conservation \rightarrow only contributes to $\pi^+\pi^-$ and $\pi^0\pi^\pm$
- sequential $D_{13} \rightarrow N \rho$

Motivation for Photoproduction with $\pi^0\pi^{\pm}$ [1,3]

- imp. for in-medium modifications (broadnening, mass shift effects) • gives also access to resonance decays involving heavier meson like ρ ; isospin conservation \rightarrow only contributes to $\pi^+\pi^-$ and $\pi^0\pi^{\pm}$
- sequential $D_{13} \rightarrow N\rho$

- Special interests in $\pi^0 \pi^{+/-}$ include also contributions from ρ meson (forbidden in $\pi^0 \pi^0$)

 Influence of ρ on 2nd resonance peak study with proton, deuteron, ⁴He and heavier targets

Experimental Facility in Mainz

Figure: MAMI floor-plan [5]

Debdeep Ghosal (University of Basel)

Jagiellonian Symposium 2022

July 12th, 2022 8 / 36

Experimental Setup of A2 Mainz

Figure: Schematic overview of the Exp. Setup [5]

Parameters for Data taking with Unpolarized and Polarized targets [5,6]

Parameters	Unpolarized target	Polarized target	Polarized target	Polarized target	Polarized target
Beamtime	May'09	Dec'15	Mar'15	Feb'14	Jul'13
Target type	LD ₂	dButanol	dButanol	dButanol	dButanol
Target length[cm]	3.02	1.88	2.0	2.0	2.0
E-sum trigger	>250	>250	>250	>250	>250
Multiplicity trigger	M2+	M2+	M2+	M2+	M2+
Photon tagger range[MeV]	400-1400	400-1400	400-1400	400-1400	400-1400
Radiator	Moeller	Moeller	Moeller	Moeller	Moeller
e ⁻ beam energy[MeV]	1575.5 MeV	1557 MeV	1558 MeV	1558 MeV	1558 MeV

Table: Parameters for deuterium(May 2009) and dButanol(July 2013, February 2014, March 2015 Dec 2015) beamtimes

Interesting Amplitudes:

э

< ロト < 同ト < ヨト < ヨト

Interesting Amplitudes:

$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$	$\gamma n(p) \longrightarrow \pi^{-}\pi^{0}p(p)$
\hookrightarrow detected particles:	\hookrightarrow detected particles:
• 1 charged:	 2 charged:
- π ⁺	- 7
	 proton participant
 3 uncharged: 	 2 uncharged:
$-\pi^0 \longrightarrow \gamma\gamma$ (98.823 %)	$- \pi^0 \longrightarrow \gamma\gamma$ (98.823 %)
 neutron participant 	

Further selection of events necessary through cuts and corrections

< ロト < 同ト < ヨト < ヨト

- Pulse shape analysis (PSA) separation of photons and recoiled nucleons in TAPS
- Time-of-flight (TOF) separation of protons, photons and neutrons
- ΔE E analysis separation of recoiled protons and charged pions
- χ^2 analysis distinction of photon pairs from neutro

- Pulse shape analysis (PSA) separation of photons and recoiled nucleons in TAPS
- Time-of-flight (TOF) separation of protons, photons and neutrons
- $\Delta E E$ analysis separation of recoiled protons and charged pions

• χ^2 analysis distinction of photon pairs from neutrons

- Pulse shape analysis (PSA) separation of photons and recoiled nucleons in TAPS
- Time-of-flight (TOF) separation of protons, photons and neutrons
- $\Delta E E$ analysis

separation of recoiled protons and charged pions

χ² analysis distinction of photon pairs from neuti

Image: A Image: A

- Pulse shape analysis (PSA) separation of photons and recoiled nucleons in TAPS
- Time-of-flight (TOF) separation of protons, photons and neutrons
- $\Delta E E$ analysis separation of recoiled protons and charged pions

• χ^2 analysis distinction of photon pairs from ne

通 ト イヨ ト イヨト

- Pulse shape analysis (PSA) separation of photons and recoiled nucleons in TAPS
- Time-of-flight (TOF) separation of protons, photons and neutrons
- $\Delta E E$ analysis separation of recoiled protons and charged pions
- χ^2 analysis distinction of photon pairs from neutrons

Proton and Charged Pion identification with PID and CB

Figure: Identification of charged particle

Major Cuts for event selection:

- invariant mass of the π^0 reconstructed from $\gamma\gamma$
- coplanarity of the final state (ϕ -angle between the $\pi^{+/-}\pi^0$ system and the participant nucleon)
- ullet missing mass of either a charged $\pi^{+/-}$ or the proton

Major Cuts for event selection:

- \bullet invariant mass of the π^0 reconstructed from $\gamma\gamma$
- coplanarity of the final state (ϕ -angle between the $\pi^{+/-}\pi^0$ system and the participant nucleon)
- \bullet missing mass of either a charged $\pi^{+/-}$ or the proton

Analysis Background Rejection: Missing mass analysis

(a) Missing mass comparison spectra of C-subtracted dbutanol data set with the difference of the two helicity states. (b) ΔM for dButanol for the reaction on proton (blue) and neutron (red); line shape as black line. Influence of the carbon clearly visible in the sum.

0

π⁰π⁻p

 $\pi^0\pi^+n$

0.5

-500

N_{1/2}+N_{3/2}

N_{1/2}+N_{3/2}

π⁰π⁻p

 $\pi^0\pi^+n$

500 -500 ∆M [MeV] N_{1/2}-N_{3/2}

N_{1/2}-N_{3/2}

500

0

- Photoproduction of mesons → Model independent reaction analysis
 → data beyond total cross sections and angular distributions
- ② problem of missing resonances persists = broad and overlapping resonances → observables are sensitive to interference terms

- **②** problem of missing resonances persists = broad and overlapping resonances \rightarrow observables are sensitive to interference terms

- **②** problem of missing resonances persists = broad and overlapping resonances \rightarrow observables are sensitive to interference terms

several observables to be measured: for pseudoscalar meson pair photoproduction can be further divided into three groups \rightarrow single, double, triple pol. obs. they require the use of

- **②** problem of missing resonances persists = broad and overlapping resonances \rightarrow observables are sensitive to interference terms

several observables to be measured: for pseudoscalar meson pair photoproduction

can be further divided into three groups \rightarrow single, double, triple pol. obs. they require the use of

- polarized beam (\mathcal{B})
- or a polarized target (\mathcal{T})
- or a recoil polarimeter (\mathcal{R})
- or a combination of the three.

- O problem of missing resonances persists = broad and overlapping resonances \rightarrow observables are sensitive to interference terms

several observables to be measured: for pseudoscalar meson pair photoproduction

can be further divided into three groups \rightarrow single, double, triple pol. obs. they require the use of

- polarized beam (B)
- or a polarized target (\mathcal{T})
- or a recoil polarimeter (\mathcal{R})
- or a combination of the three.

from the category $\mathcal{BT} \to {\it E}, {\it F}, {\it H}$

- O problem of missing resonances persists = broad and overlapping resonances \rightarrow observables are sensitive to interference terms

several observables to be measured: for pseudoscalar meson pair photoproduction

can be further divided into three groups \rightarrow single, double, triple pol. obs. they require the use of

- polarized beam (\mathcal{B})
- ullet or a polarized target (\mathcal{T})
- or a recoil polarimeter (\mathcal{R})
- or a combination of the three.

from the category $\mathcal{BT} \rightarrow E, F, H$ as our main interest!

E-observable extraction

Asymmetry between the two helicity states

•V1(Carbon subtraction method): to determine the carbon and oxygen contributions to the dButanol •V2(Direct method): extract tot. CS from dButanol beamtime \rightarrow to be normalized using 2×unpolarized CS.

イロト イポト イヨト イヨ

Asymmetry between the two helicity states

E-observable determines the conribution from $\sigma_{1/2}$ and $\sigma_{3/2}$ components

• Circularly polarized photon beam impinging on a longitudinally polarized nucleon target

•V1(Carbon subtraction method): to determine the carbon and oxygen contributions to the dButanol •V2(Direct method): extract tot. CS from dButanol beamtime \rightarrow to be normalized using 2×unpolarized CS. Asymmetry between the two helicity states

E-observable determines the conribution from $\sigma_{1/2}$ and $\sigma_{3/2}$ components

• Circularly polarized photon beam impinging on a longitudinally polarized nucleon target

•V1(Carbon subtraction method): to determine the carbon and oxygen contributions to the dButanol •V2(Direct method): extract tot. CS from dButanol beamtime \rightarrow to be normalized using 2×unpolarized CS.

Results: E-observable with dButanol target

Averaged over different beamtimes in terms of E_{γ} and W

Figure: For reaction with final state $\pi^0\pi^+$

Results: E-observable with dButanol target

Averaged over the different beamtimes in terms of E_{γ} and W

Figure: For reaction with final state $\pi^0\pi^-$

Results: Two Helicity state cross sections Averaged over different beamtimes for $\pi^0 \pi^+$ channel [in terms of E_{γ}]

July 12th, 2022 20 / 36

Results: Two Helicity state cross sections Averaged over different beamtimes for $\pi^0\pi^-$ channel [in terms of E_{γ}]

July 12th, 2022 21 / 36

Results: Further comparison and Discussion

Figure: double π^0 photoproduction [7]

Figure: This work i.e mixed charged pion photoproduction = - :

Debdeep Ghosal (University of Basel)

Jagiellonian Symposium 2022

July 12th, 2022 22 / 36

Summary and Outlook

Debdeep Ghosal (University of Basel)

E

<ロト <回ト < 回ト < 回ト

Summary :

- Cross sections for both mixed charged double pion production channels extracted
- $\bullet\,$ E-observable with direct and carbon subtracted methods extracted $\rightarrow\,$ they are in good comparison
- Comparison with previous data and MAID model
- \bullet Hint about the in-medium modification effects and diffractive production of ρ meson

Summary :

- Cross sections for both mixed charged double pion production channels extracted
- $\bullet\,$ E-observable with direct and carbon subtracted methods extracted $\rightarrow\,$ they are in good comparison
- Comparison with previous data and MAID model
- \bullet Hint about the in-medium modification effects and diffractive production of ρ meson

Outlook :

- This work contributes to the world database of complete experiment
- A more refined analysis with intermediate channels is followed, although it doesn't affect the current E-asymmetry
- Publish the results of E-asymmetry

References

https:

//jazz.physik.unibas.ch/site/talks/krusche_dnp08.pdf

- F. Zehr and B. Krusche et al. The European Physical Journal A, 48(7):98, 2012. ISSN 1434-6001. doi: 10.1140/epja/i2012-12098-1.
- https://jazz.physik.unibas.ch/site/talks/Abt_DPG_17_03_ talk.pdf
- https://jazz.physik.unibas.ch/site/talks/lutterer_dpg_ talk_pion_photoproduction_30032017.pdf.
- https://edoc.unibas.ch/39089/1/Lilian_Witthauer.pdf
- https://edoc.unibas.ch/55107/1/thesis_kaeser_2017.pdf

3

< ロト < 同ト < ヨト < ヨト

э

< ロト < 同ト < ヨト < ヨト

backup

Debdeep Ghosal (University of Basel)

Jagiellonian Symposium 2022

July 12th, 2022 26 / 36

Ξ

▶ < ∃ ▶

Image: A math a math

• Nucleon Detection Efficiency

[to compensate for imperfections in the implementation of the experimental setup in GEANT and inefficiencies in the PID and the TAPS vetoes]

• CB Energy sum correction/CDF [The energy-sum trigger checks the sum of the deposited energies of the particles in CB against a threshold value]

• Gap correction

[acceptance hole between the CB and TAPS, where no particles are detected]

Analysis Background Rejection: Invariant mass cut

$$m_{\gamma_{1,2}} = \sqrt{E_{\gamma_{1,2}} \cdot (1 - \cos \phi_{\gamma_{1,2}})} \tag{1}$$

Ξ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Analysis Background Rejection: Invariant mass cut

$$m_{\gamma_{1,2}} = \sqrt{E_{\gamma_{1,2}} \cdot (1 - \cos \phi_{\gamma_{1,2}})} \tag{1}$$

Figure: Invariant mass for bins of the incident photon energy. Cut positions are indicated by the dashed lines.

July 12th, 2022 28 / 36

э

イロト イポト イヨト イヨト

Debdeep Ghosal (University of Basel)

Ξ

イロト イボト イヨト イヨト

Analysis Background Rejection: Coplanarity cut

Figure: The angular difference $\Delta \phi$ of the pion-pion system to the recoil nucleon for five different bins of the incident photon energy. Cut positions are indicated by the dashed lines.

Calculation of E-observable and the two helicity state cross sections

Table: Overview of the versions used to extract E

where, $\sigma_{\Sigma} = \sigma_{1/2} + \sigma_{3/2}$, $\sigma_{\Delta} = \sigma_{3/2} - \sigma_{1/2}$ and $\sigma_0 =$ unpol. x-sec.

Version	

Table: Overview of the versions used to extract the two helicity state cross sections

Debdeep Ghosal (University of Basel)

Jagiellonian Symposium 2022

July 12th, 2022 30 / 36

Calculation of E-observable and the two helicity state cross sections

Table: Overview of the versions used to extract E

where, $\sigma_{\Sigma} = \sigma_{1/2} + \sigma_{3/2}$, $\sigma_{\Delta} = \sigma_{3/2} - \sigma_{1/2}$ and σ_0 = unpol. x-sec.

Table: Overview of the versions used to extract the two helicity state cross sections

Debdeep Ghosal (University of Basel)

Jagiellonian Symposium 2022

July 12th, 2022 30 / 36

白 ト イヨ ト イヨ ト

Calculation of E-observable and the two helicity state cross sections

Table: Overview of the versions used to extract E

where, $\sigma_{\Sigma} = \sigma_{1/2} + \sigma_{3/2}$, $\sigma_{\Delta} = \sigma_{3/2} - \sigma_{1/2}$ and $\sigma_0 =$ unpol. x-sec.

Version	$\sigma_{1/2}$	$\sigma_{3/2}$
1	$\sigma_0(1 + E_{dir.})$	$\sigma_0(1-E_{dir.})$
11	$\sigma_0(1+E_C)$	$\sigma_0(1-E_C)$
III	$\frac{\sigma_{\Sigma} + \sigma_{\Delta}}{2}$	$\frac{\sigma_{\Sigma} - \sigma_{\Delta}}{2}$

Table: Overview of the versions used to extract the two helicity state cross sections

Debdeep Ghosal (University of Basel)

Sys. Uncertainty calc.

In determining of E, the uncertainty coming from the flux and the analysis cuts, cancel out since they appear in the numerator and denominator of the fraction;

the uncertainties coming from the carbon subtraction and different nucleon detection efficiencies of the polarised and unpolarised experiments, were estimated by

$$\Delta E = diff. |E^{vers1} - E^{vers2}|$$

and For the helicity dependent cross sections:

$$\begin{split} &\Delta\sigma_{1/2} = \textit{Max}(\Delta\sigma_{1/2}^{1}, \Delta\sigma_{1/2}^{2}, \Delta\sigma_{1/2}^{3}) \\ &\text{where, } \Delta\sigma_{1/2}^{1} = \textit{diff.} |\sigma_{1/2}^{\textit{vers1}} - \sigma_{1/2}^{\textit{vers2}}|, \ \Delta\sigma_{1/2}^{2} = \textit{diff.} |\sigma_{1/2}^{\textit{vers2}} - \sigma_{1/2}^{\textit{vers3}}|, \text{ and so on...} \end{split}$$

$$\Delta \sigma_{3/2} = Max(\Delta \sigma_{3/2}^1, \Delta \sigma_{3/2}^2, \Delta \sigma_{3/2}^3)$$

where, $\Delta \sigma_{3/2}^1 = diff. |\sigma_{3/2}^{vers1} - \sigma_{3/2}^{vers2}|$, and so on...

This systematic uncertainty accounts for uncertainties due to the carbon subtraction, differences in the nucleon detection efficiency, flux, and analysis cuts compared to the unpolarised measurement

Corrections

software trigger [cdf/CB energy sum]: The CB energy sum trigger is checking the total sum of the analog signals of all Nal(TI) crystals against a threshold, which corresponds to a certain energy. photon energy sum depends on the energy and angular distribution of the -meson and thus a certain model dependence is introduced

July 12th, 2022 33 / 36

E

July 12th, 2022

- 2

36 / 36