The SiFi-CC project – towards online monitoring of proton therapy

Aleksandra Wrońska for the SiFi-CC Collaboration Jagiellonian University Kraków

3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics 26 June 2019

Need for range monitoring

Effect of 1-cm air cavity in front of tumour:

- Photons: dose larger by <5%</p>
- Ions: range larger by ~1 cm

Potential causes:

- Planning uncertainties CT→ dE/dx
- Interfractional anatomical changes
 - Weight gain/loss
 - Change of tumour size
 - Full/empty sinuses

Need for range monitoring

- Steep slope of dose distribution benefit / issue
- Tumours close to critical organs (spinal cord, brain structures) need precision in dose delivery
- Clinical practice: range uncertainties → need to compromise dose conformality and safety
- In-vivo range verification methods would represent an optimal solution for full explotitation of the advantages afforded by the ion beam"
 - Reduction of safety margins, better treatment
 Nedicine
 - Potential to treat new patients categories

Source of range uncertainty in the patient	Range uncertainty
Independent of dose calculation:	
Measurement uncertainty in water for commissioning	± 0.3 mm
Compensator design	± 0.2 mm
Beam reproducibility	± 0.2 mm
Patient set up	± 0.7 mm
Dose calculation:	
Biology (always positive)	+ 0.8%
CT imaging and calibration	± 0.5%
CT conversion to tissue (excluding I-values)	± 0.5%
CT grid size	± 0.3%
Vean excitation energies (I-values) tissue	± 1.5%
ne degradation; complex	- 0.7%
Range degradation; local lateral inhomogeneities*	± 2.5%
Total (excluding *)	2.7% + 1.2 mm
Total	4.6% + 1.2 mm

Approaches to range monitoring

Idea: exploit by-products of patient irradiation with ion beam:

Protons

- forward-peaked
- modified by tissue on the way out

Neutrons

- forward-peaked,
- difficult to detect,
- modified by tissue on the way out

β+ emitters (consequently 511-keV gamma pairs)

PET - well established technology tissue transparent for gamma quanta large detectors, incompatible with gantry

• γ radiation

Prompt Gamma Imaging – emerging technology tissue transparent for gamma quanta various options (timing, spectroscopy, imaging, ...)

PG emission – microscopic picture

Gamma quanta leaving the patient carry undisturbed information from their place of origin, i.e. interaction region

Reaction channels most relevant for PGI:

- $= {}^{12}C(p, p' \gamma_{4.4 \text{ MeV}}){}^{12}C, {}^{16}O(p, X \gamma_{4.4 \text{ MeV}}){}^{12}C, {}^{16}O(p, p' \gamma_{6.1 \text{ MeV}}){}^{16}O$
- Gamma yield depends on proton energy, thus is spatially correlated with depth

γCCB project - finished

6 Jun 2019

Aleksandra Wrońska

The SiFi-CC project in JU

- On-line monitoring of dose distribution in proton therapy using heavy scintillating fibres
 - **SiFiCC = SiPM-** and heavy scintillation Fiber-based Compton Camera

<u>Goal</u>: development of a method for on-line monitoring of deposited dose distribution in proton therapy

<u>Technique</u>: imaging exploiting prompt gamma rays emitted during irradiation

Technology: Detector based entirely on new, heavy scintillating materials read out by SiPMs; DAQ and (partly) image reconstruction based on FPGA → implantation of HEP technologies to medical application;

Realization: dual-modality setup

- Coded mask CM
- Compton camera CC

Financed as SONATA BIS by NCN (National Science Centre) till September 2022

PGI with a Compton camera

- Detector: scatterer and absorber planes
- Aim: register a Compton-scattering event, positions and energies in both layers, reconstruct Compton cone
- Superimpose intersections of many of such cones
 → 3d image
- No prototype feasible to work at close-to-clinical beam intensities and exposures
- Many designs, optimization in progress
 - Dresden: CZT + segmented LSO/BGO
 - Munich: double-sided Si strip detectors + monolithic LaBr3
 - Lyon: double-sided Si strip detectors + segmented BGO
 - Valencia: monolithic LaBr3 + monolithic LaBr3
 - Baltimore: multistage CZT based on POLARIS

Team

Dual modality - synergy

Coded mask CM

- Technique widely used in astronomy, also for observation of γ sources
- Technique not tested so far for the purpose of proton therapy
- 2d image
- Much larger statistics compared to single-slit detectors without compromising image resolution

Compton camera CC

- Solution considered and tested for the use in proton therapy
- 3d image
- Problem faced so far: small statistics (efficiency), background from random coincidences
- Proposed solution: detectors of larger efficiency and better time resolution (→electronic collimation)

Dual modality - synergy

Coded mask CM

Compton camera CC

Common parts:

- Detection technique
- FEE
- DAQ
- \rightarrow expensive hardware

Modality-specific parts:

- Collimation
- Image reconstruction
- → mostly software (manpower)

Lab tests of scintillating fibers

- Test bench constructed
- Tested materials: LuAG:Ce, LYSO, GAGG:Ce:Mg
- Characteristics and criteria:
 - attenuation length
 - signal time constants and resolution
 - light output
 - internal radioactivity
 - price/availability
- Further studies: coating/wrapping, coupling with SiPMs, …

Katarzyna Rusiecka PhD student JU Kraków

12/31

Setup design – MC simulations

- Simulation of different setup versions with **GEANT4**
- Efficiency, position- and energy resolution 1 studied for different geometries and materials
- Low-level (E, x, y, z) reconstruction algorithms developed
- Results confronted with lab measurements

Software framework

- Dedicated software framework to cover
 - image reconstruction
 - data decoding
 - detector calibration
 - a
- Current status: backprojection and LM-MLEM implemented
- Resolution of σ=2.5 mm obtained for a point-like source in reconstruction (optimization and verification in progress)

Majid Kazemi Kozani PhD student JU Kraków

FEE and DAQ development

- FPGA-based DAQ
- FTAB board developed for JPET modified to feature full ADC functionality
- Building coincidences, energy and position reconstruction possible on-board → faster!

Marek Pałka post-doc JU Kraków

Time-line

- First, small-scale prototype ready this year
- Next year: a full-scale single module ready, to be tested in coded-mask mode
- 2021/2022 full SiFI-CC
- Stay tuned

Thank you for your attention Solution http://bragg.if.uj.edu.pl/gccbwiki