

3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics

Fukushima Accident

8 years after

Ryugo Hayano

The University of Tokyo

Councilor, Radiation Effect Research Foundation

March 11, 2011 14:46 JST

Death toll

as of March 2019, 8 years after the earthquake

	Earthquake & Tsunami Death (+missing)	Disaster- related Death	Death due to radiation
Iwate 1.3M	5788	467	0
Miyagi 2.3M	10761	928	0
Fukushima 2M	1810	2268	0

About myself

- Experimental physics professor, U. Tokyo
- 1997-2017: "Antimatter" team leader at CERN

About myself

- Experimental physics professor, U. Tokyo
- 1997-2017: "Antimatter" team leader at CERN
- No past experience in radiation protection, nor risk communication
- Work on Fukushima-related problems not in my job description

I am here today because of

One of my first tweets: Mar 13, 2011, 07:49

Dose rate at the front gate of FDNPP (curiosity-driven)

The number of my twitter followers

Top 100 scientists on twitter

Twitter's science stars, the sequel | Science/AAAS | News

October 2014

. . .

20. Steven Pinker, Cognitive scientist
145,000 followers @sapinker (http://twitter.com/@sapinker)
Citations: 49,933 K-index: 105
Total number of tweets: 1,674
Harvard University, United States

21. Richard Wiseman, Psychologist 135,000 followers <u>@RichardWiseman (http://twitter.com/@RichardWiseman)</u> Citations: 4,687 K-index: 209 Total number of tweets: 22,600 *University of Hertfordshire, United Kingdom*

22. Ryugo Hayano, Nuclear physicist

124,000 followers <u>@hayano (http://twitter.com/@hayano)</u> Citations: 956 K-index: 319 7 Total number of tweets: 56,500 *University of Tokyo, Japan*

Cloud funding

My Fukushima-related work has been funded entirely by donations (which I didn't ask for) from my twitter followers

(total ~ 200,000 € equivalent)

東京大学への寄付の情報、受付、活動報告

東京大学基金 Le University of Tokyo Foundation

明日の日本を支えるために

<u>東京大学基金ホーム</u> > 早野龍五教授(理学系研究科)へのご寄附については、寄附の目的を"早野先生支援のため"と記載

早野龍五教授(理学系研究科)へのご寄附については、寄附の目的 を"早野先生支援のため"と記載して下さい

Published in Oct 2014 >100,000 copies sold

We Want to Know

A conversation about radiation and its effects in the aftermath of Japan's worst nuclear accident

Ryugo Hayano Shigesato Itoi

Out of stock?

Earthquake → Tsunami → Disaster

External power line destroyed by earthquake but diesel generators turned on

40 minutes later ... Tsunami flooded diesel generators → total station blackout

Boiling Water Reactor "Mark-1"

Meltdown, Hydrogen explosion

No electricity, no cooling, core temperature >2500 °C Fuel rods melted down, hydrogen explosion, → release of radioactive substances

Date (March 11-18, 2011)

Evacuation

Evacuation order 3km - March 11 21:23 10km - March 12 5:44 20km - March 12 18:25 (~165k people)

after ~8+ years, some 41k people still cannot return

(even though the estimated annual doses in many communities are <<20 mSv/y)

Evacuation

Evacuation order 3km - March 11 21:23 10km - March 12 5:44 20km - March 12 18:25 (~165k people)

after ~8+ years, some 41k people still cannot return

(even though the estimated annual doses in many communities are <<20 mSv/y)

Radiation exposure pathways

We are all exposed to natural radiation

Source of exposure		Annual effective dose (mSv)			
		Agerage	Typical range		
Extornal	Cosmic	0.39	0.3-1.0		
External	Terrestrial	0.48	0.3-1.0		
	Inhalation	1.26	0.2-10		
Internal	Ingestion	0.29	0.2-1.0		
Total		2.4	1.0-13		

Compiled by <u>world-nuclear.org</u>, based on "2008 United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, Sources and Effects of Ionizing Radiation"

Is this familiar to you?

This you can find in Ogród Profesorski

Dopuszczalne roczne normy dla:

promieniowania kosmicznego 334/min

promieniowania gamma 102/s

Safe annual radiation levels for:

cosmic rays 334/min

gamma rays 102/s

1 - Liczba cząstek / minutę promieniowania kosmicznego padającego pionowo

2 - Liczba cząstek / minutę promieniowania kosmicznego padającego *poziomo*

3 - Liczba kwantów gamma / sekundę

Number of horizontal cosmic rays / minute
 Number of vertical cosmic rays / minute
 Number of gamma rays / second

Internal exposures (Food safety)

Note: 1 mSv ↑↓ 70,000 Bq of ¹³⁷Cs

Chernobyl studies, i.e., soil→food→people infer:

average internal dose of e.g., Fukushima city residents ~ 5 mSv/y (initial estimate)

hayano

19

Food, water, milk ... regulatory criteria

Was this necessary?

2011 Mar 17 ~

Provisional regulation values for radioactive cesium¹

Category	Limit
Drinking water	200
Milk, dairy products	200
Vegetables	
Grains	500
Meat, eggs, fish, etc.	

Bq/kg

2012 Apr 1 ~

ONew standard limits for

radioactive cesium ²	
Category	Limit
Drinking water	10
Milk	50
General Foods	100
Infant Foods	50
	Bq/kg

EU

1250

Food Safety (School Lunch)

Summer, 2011 - Increasing number of mothers started to tweet: "school lunches safe to eat?"

Food Safety (School Lunch)

I proposed to measure school lunch the government funded the project from 2012

Food Safety (School Lunch)

Fukushima-city school lunch: free of radiocaesium

(results of other municipalities are similar)

Food Safety (WBC)

Food Safety (WBC)

WBC measurements of some 30,000 residents in 2011-2012 The first actual data published in English

No. 4]			

Proc. Jpn. Acad., Ser. B 89 (2013)

Internal radiocesium contamination of adults and children in Fukushima 7 to 20 months after the Fukushima NPP accident as measured by extensive whole-body-counter surveys

> By Ryugo S. HAYANO,^{*1,†} Masaharu TSUBOKURA,^{*2} Makoto MIYAZAKI,^{*3} Hideo SATOU,^{*4} Katsumi SATO,^{*4} Shin MASAKI^{*4} and Yu SAKUMA^{*4}

Internal exposure of Fukushima people surprisingly low

157

Food Safety (WBC)

¹³⁷Cs in Japanese adult male in 1964 was much higher than in Fukushima 600 Bq ←<u>1964 ~ 550 Bq/body</u> 99% of Fukushima people were below this level (<0.01 mSv) 300 Bq already in 2012 0 1955 1960 1965 1970 1975 1980 1985 1990 1995

Why so low? favorable geological features, experts, government, farmers ...

Food Safety (rice)

Every rice bag harvested in Fukushima, more than 10,000,000 (30 kg each), measured every year

The number of bags which exceeded the 100 Bq/kg limit

- 71 in 2012
- 28 in 2013
 - 2 in 2014
 - 0 in 2015
 - 0 in 2016
 - 0 in 2017
 - 0 in 2018

Food Safety (Fish)

Fishery products monitoring results (Apr 2011 - Mar 2019)

hayano

29

Internal exposure - negligible food - safe enough

However, parents were unconvinced

So, I made a special device called the "BABYSCAN"

BABYSCAN

As a detector, this works. but mothers would never like this

©hayano

BABYSCAN - is a communication tool

Courtesy, NHK World

BABYSCAN - Babies are "clean"

Detection limit < 30 Bq/body

Proc. Jpn. Acad., Ser. B **91** (2015)

[Vol. 91,

Whole-body counter surveys of over 2700 babies and small children in and around Fukushima Prefecture 33 to 49 months after the Fukushima Daiichi NPP accident

By Ryugo S. HAYANO,^{*1,†} Masaharu TSUBOKURA,^{*2} Makoto MIYAZAKI,^{*3} Akihiko OZAKI,^{*4} Yuki SHIMADA,^{*4} Toshiyuki KAMBE,^{*4} Tsuyoshi NEMOTO,^{*4} Tomoyoshi OIKAWA,^{*4} Yukio KANAZAWA,^{*4} Masahiko NIHEI,^{*5} Yu SAKUMA,^{*5} Hiroaki SHIMMURA,^{*6} Junichi AKIYAMA^{*6} and Michio TOKIWA^{*6}

2. External exposures

External exposures (school children data)

~50% below 1mSv/y in winter 2011

External exposures (school children data)

Fukushima-city school children (below 15 yo) mean <u>"additional"</u> annual exposures - 7-year trend

Source: Fukushima City

The "D-shuttle" project

"D-shuttle", a personal dosimeter with 1-hour integrated-dose readout

Adachi et al 2016 J. Radiol. Prot. 36 (2016) 49

D-shuttle data:

8 students & 4 teachers came to Fukushima in 2015

Visit "Tomioka" (in the evacuation zone)

© Hayano

Fukushima students analyzed the data

co-authored by 233 high school students, teachers, and experts from Japan, France, Poland and Belarus

J. Radiol. Prot. 36 (2016) 49

OPEN ACCESS

J. Radiol. Prot. 36 (2016) 49–66

Journal of Radiological Protection doi:10.1088/0952-4746/36/1/49

Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus—the 'D-shuttle' project—

N Adachi¹, V Adamovitch², Y Adjovi³, K Aida⁴, H Akamatsu⁵, S Akiyama⁶, A Akli⁷, A Ando⁸, T Andrault⁹, H Antonietti³, S Anzai¹⁰, G Arkoun³, C Avenoso¹¹, D Ayrault⁹, M Banasiewicz¹², M Banaśkiewicz¹³, L Bernardini¹¹ E Bernard⁷, E Berthet¹¹, M Blanchard³, D Boreyko¹⁴, K Boros¹⁵, S Charron¹⁶, P Cornette⁹, K Czerkas¹⁵, M Dameron¹¹, I Date¹⁷, M De Pontbriand³, F Demangeau⁹, ¹ Dobaczewski¹⁸, L Dobrzyński¹⁹, A Ducouret³, M Dziedzic²⁰, A Ecalle⁹, V Edon⁹, K Endo²¹, T Endo²¹, Y Endo²¹, D Etryk¹², M Fabiszewska¹⁸, S Fang⁴, D Fauchier⁹, F Felici⁷, Y Fujiwara¹⁰, C Gardais⁹, W Gaul²⁰, L Gurin⁹, R Hakoda²², I Hamamatsu⁶, K Handa¹⁰, H Haneda¹⁰, T Hara¹⁰, M Hashimoto¹, T Hashimoto⁸, K Hashimoto²¹, D Hata¹, M Hattori¹⁰, R Hayano²³, R Hayashi²², H Higasi⁵, M Hiruta⁶, A Honda⁶, Y Horikawa⁸, H Horiuchi²⁴, Y Hozumi¹⁷, M Ide²⁵, S Ihara⁸, T Ikoma²⁴, Y Inohara²², M Itazu²⁴, A Ito⁸, J Janvrin⁹, I Jout¹¹, H Kanda⁵, G Kanemori⁵, M Kanno¹⁰, N Kanomata¹⁰, T Kato²⁴, S Kato²⁴, J Katsu⁵, Y Kawasaki²¹, K Kikuchi⁴, P Kilian²⁶, N Kimura²⁵, M Kiya¹⁰, M Klepuszewski¹⁵, E Kluchnikov¹⁴, Y Kodama⁵, R Kokubun¹⁰, F Konishi²² A Konno⁶, V Kontsevoy², A Koori⁶, A Koutaka⁶, A Kowol²⁷, Y Koyama⁴, M Kozioł¹³, M Kozue¹, O Kravtchenko¹⁴, W Kruczała¹², M Kudła²⁸, H Kudo²⁹, R Kumagai²⁴, K Kurogome²⁵, A Kurosu²⁹, M Kuse²⁵, A Lacombe³, E Lefaillet³, M Magara¹⁷, J Malinowska²⁶, M Malinowski¹⁸, V Maroselli⁷, Y Masui²⁹, K Matsukawa²⁹, K Matsuya¹⁷, B Matusik²⁰, M Maulny⁹, P Mazur²⁷, C Miyake²⁹, Y Miyamoto⁴, K Miyata¹, K Miyata⁵, M Miyazaki³⁰, M Molęda²⁰, T Morioka¹, E Morita²⁴, K Muto¹, H Nadamoto⁵, M Nadzikiewicz²⁸, K Nagashima²⁹, M Nakade²², C Nakayama²⁵, H Nakazawa¹⁷,

Y Nihei⁴, R Nikul², S Niwa⁸, O Niwa³⁰, M Nogi⁶, K Nomura²⁹, D Ogata⁸, H Ohguchi³¹, J Ohno²⁴, M Okabe¹⁷, M Okada²², Y Okada⁶, N Omi²⁵, H Onodera¹⁰, K Onodera²⁵, S Ooki²¹, K Oonishi²⁹, H Oonuma¹⁰, H Ooshima⁸, H Oouchi¹, M Orsucci¹¹, M Paoli¹¹, M Penaud⁹, C Perdrisot⁹, M Petit⁹, A Piskowski¹⁵, A Płocharski¹⁵, A Polis¹³, L Polti³, T Potsepnia¹⁴, D Przybylski¹², M Pytel²⁸, W Quillet⁹, A Remy³, C Robert⁹, M Sadowski¹⁹, M Saito¹⁰, D Sakuma¹, K Sano⁵, Y Sasaki²⁴, N Sato⁴, T Schneider³², C Schneider³, K Schwartzman², E Selivanov¹⁴, M Sezaki²⁵, K Shiroishi²¹, I Shustava¹⁴, A Śniecińska²⁸, E Stalchenko¹⁴, A Staroń²⁷, M Stromboni⁷. W Studzińska²⁶. H Sugisaki¹⁷. T Sukegawa²¹. M Sumida²², Y Suzuki¹⁷, K Suzuki¹⁰, R Suzuki¹⁰, H Suzuki¹⁰, K Suzuki⁶, W Świderski¹⁸, M Szudejko³³, M Szymaszek²⁷, J Tada³⁴, H Taguchi²², K Takahashi⁴, D Tanaka⁵, G Tanaka²⁹, S Tanaka²⁴, K Tanino⁴, K Tazbir¹³, N Tcesnokova¹⁴, N Tgawa⁵, N Toda⁶, H Tsuchiya¹⁷, H Tsukamoto⁸, T Tsushima¹, K Tsutsumi²⁵, H Umemura⁸, M Uno²⁴, A Usui²⁵, H Utsumi²⁹, M Vaucelle⁹, Y Wada¹⁷, K Watanabe⁴, S Watanabe²², K Watase²⁹, M Witkowski²⁶, T Yamaki²¹, J Yamamoto⁴, T Yamamoto¹⁷, M Yamashita²², M Yanai²¹, K Yasuda²², Y Yoshida¹, A Yoshida²¹, K Yoshimura²⁵, M Żmijewska¹⁵ and E Zuclarelli⁷

¹ Adachi High School, 2-347 Kakunai, Nihonmatsu, Fukushima 964-0904, Japan

² Bragin High School, Bragin, Gomel region, Belarus

³ Notre Dame High School, 1 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, France

⁴ Aizu Gakuho High School, Ikkimachi Oaza Yahata, Yahata-1-1, Aizuwakamatsu, Fukushima 965-0003, Japan

⁵ Nada High Shool, 8-5-1 Uozakikitamachi, Higashinada-ku, Kobe, Hyogo 658-0082, Japan

⁶ Iwaki High School, Taira Aza Takatsuki 7, Iwaki, Fukushima 970-8026, Japan

⁷ Giocante de Casabianca High School, Avenue Jean Zuccarelli, 20200 Bastia, France

⁸ Ena High School, 1023-1 Ohi-cho, Ena, Gifu 509-7201, Japan

⁹ Bois d'Amour High School, 9 Rue de la Garenne, 86000 Poitiers, France

¹⁰ Fukushima High School, 5-72 Moriaicho, Fukushima, Fukushima 960-8002, Japan

¹¹ Paul Vincensini High School, Rue de la Quatriéme Division Marocaine de

Montagne, 20600 Bastia, France

¹² Zá 2⁻ 2 im. Marii Skłodowskiej-Curie, Otwock, Poland

¹⁴ Blaise Pascal High School n°46, 14, rue de Clermont-Ferrand, 246027 Gomel, Belarus

a 5 ina 1 Inii En

¹⁵ ZS nr 5 im. Unii Europejskiej, III LO, Ostroleka, Poland
 ¹⁶ Institute for Radiation Protection and Nuclear Safety (IRSN), BP17,92262

Fontenay-aux-Roses Cedex, France

hayano 42

Adachi et al J. Radiol. Prot. 36 (2016) 49

N Adachi et al

Downloaded >100,000 times so far

¹³ I LO im. J. Słowackiego, Częstochowa, Poland

3. Psychosocial problems remain

Hereditary effets in Fukushima?

Q: Do you think the radiation exposure in Fukushima will affect your descendants?

Year	2012	2013	2014	2015	2016	2017
likely + very likely	60%	48%	48%	38%	38%	36%
Questionnaire filled out by >40,000 Fukushima adults Source: Fukushima Medical University						

Year		Same	e quest	ion,	2017
likely + very likely		even	o resid worse	ents → ‼	50%
	Que	estionnaire	filled out b	y 1,000 To	kyo adults

Source: Mitsubishi Research Institute

hayano

47

Conclusions

- Normal life is returning to ~2 M Fukushima residents (although there are still ~41 k evacuees).
- Fukushima food: safe to eat,
 Fukushima is safe to live in.
- The risks due to internal/external exposures have been found to be small.
- However, psychosocial and economical problems still remain.
- Prolonged evacuation destroyed communities, families...